Автор: Пользователь скрыл имя, 24 Ноября 2011 в 20:15, курсовая работа
Данная курсовая работа посвящена изучению характеристики и применению моделей оценки финансовых активов САРМ и АРТ.
Актуальность темы данной курсовой работы связана с рациональным применением моделей оценки финансовых активов (САРМ и АРТ) финансового рынка, объективно требующего нахождения оригинальных подходов к вложению и оценке в ценные бумаги (финансовые активы).
Методология оценки финансовых активов возникла во 2-ой половине 20 века, наиболее эффективными как показывает практика, сегодня являются модель оценки финансовых активов САРМ и как дальнейшее ее преобразование теория арбитражного ценообразования APT (1970г.).
Введе-ние………………………………………………………………...…..3
Теоретическая часть
Глава 1. Методы и модели САРМ ……………………………………..….5
1.1. Модель оценки стоимости активов (CAPM)………………………..5
1.1.1. Линия рынка капита-ла.………………………………….…….7
1.1.2. Рыночный и нерыночный рис-ки.………………………….…10
1.1.3. Бета…………………………………………………………..…12
1.1.4. Линия рынка акти-ва………………………………………..…14
1.1.5. Аль-фа…………………………………………………………..16
1.2. Модификации САРМ ………………………………………...…….18
1.3. Практическое применение САРМ и значимость теории ………...21
Глава 2. Теоретические и практические аспекты использования
модели арбитражного ценообразования (АРТ)…………………………25
2.1. Модель арбитражного ценообразова-ния………………………22
2.2. Отличие модели арбитражного ценообразования от САРМ…25
Заключе-ние……………………………………………………………...…32
Практическая часть…………………………………………………......…34
Список использованной литерату-ры…………………………………….46
где si – риск i-го портфеля, для которого определяется уровень ожидаемой доходности; Е(ri) – ожидаемая доходность i-го портфеля.
Данное уравнение можно записать следующим образом:
Таким образом, ожидаемая доходность портфеля равна ставке без риска плюс произведение отношения риска портфеля к риску рыночного портфеля и разности между ожидаемой доходностью рыночного портфеля и ставкой без риска.
Пример. rf = 10%, Е(rm) = 25%, si = 30%, sm = 15%. Определить ожидаемую доходность портфеля. Она равна:
CML
говорит о соотношении риска
и ожидаемой доходности только
для широко
1.1.2. Рыночный и нерыночный риски
Риск, с которым связано владение активом, можно разделить на две части. Первая составляющая – это рыночный риск. Его также именуют системным или недиверсифицируемым, или неспецифическим. Он связан с состоянием конъюнктуры рынка, общезначимыми событиями, например, войной, революцией. Его нельзя исключить, потому что это риск всей системы. Вторая часть – нерыночный, специфический или диверсифицируемый риск.
Он связан с индивидуальными чертами конкретного актива, а не с состоянием рынка в целом. Например, владелец какой-либо акции подвергается риску потерь в связи с забастовкой на предприятии, выпустившем данную бумагу, некомпетентностью его руководства и т. п. Данный риск является диверсифицируемым, поскольку его можно свести практически к нулю с помощью диверсификации портфеля.
Как показали исследования западных ученых, портфель, состоящий из хорошо подобранных 10-20 активов, способен фактически полностью исключить нерыночный риск (см. рис. 2).
Рис. 2. Эффект диверсификации
Широко диверсифицированный портфель заключает в себе практически только рыночный риск. Слабо диверсифицированный портфель обладает как рыночным, так и нерыночным рисками. Таким образом, инвестор может снизить свой риск только до уровня рыночного, если сформирует широко диверсифицированный портфель.
Приобретая актив, вкладчик рассчитывает получить компенсацию за риск, на который он идет. Однако риск состоит из двух частей. Каким образом рынок оценивает компоненты риска с точки зрения ожидаемой доходности? Как было сказано выше, инвестор способен практически полностью исключить специфический риск за счет формирования широко диверсифицированного портфеля. В рамках модели САРМ предполагается, что вкладчик может свободно покупать и продавать активы без дополнительных издержек.
Поэтому формирование более диверсифицированного портфеля не ведет к увеличению его расходов. Таким образом, без затрат вкладчик может легко исключить специфический риск. Поэтому в теории предполагается, что нерыночный риск не подлежит вознаграждению, поскольку он легко устраняется диверсификацией. В связи с этим, если инвестор не диверсифицирует должным образом свой портфель, он идет на ненужный риск с точки зрения той выгоды, которую он приносит обществу.
Приобретая, например, акцию, инвестор финансирует производство и таким образом приносит обществу пользу. Покупка акции связана с нерыночным риском, который является неустранимым. Поэтому инвестор должен получать вознаграждение адекватное только данному риску. В противном случае он не приобретет эту бумагу, и экономика не получит необходимые финансовые ресурсы. Однако общество (рынок) не будет вознаграждать его за специфический риск, поскольку он легко устраняется диверсификацией. С точки зрения финансирования потребностей экономики, данный риск не имеет смысла. Таким образом, вознаграждению подлежит только системный риск.
Поэтому стоимость активов должна оцениваться относительно величины именно этого риска. Весь риск актива (портфеля) измеряется такими показателями как дисперсия и стандартное отклонение. Для оценки рыночного риска служит другая величина, которую называют бета. [4, с. 278-280]
1.1.3. Бета
Для
измерения рыночного риска
Поскольку невозможно сформировать портфель, в который бы входили все финансовые активы, то в качестве него принимается какой-либо индекс с широкой базой. Поэтому доходность рынка – это доходность портфеля, представленного выбранным индексом. Бета рассчитывается по формуле:
где bi – бета i-го актива(портфеля); Covi,m – ковариация доходности i-го актива (портфеля) с доходностью рыночного портфеля; Соrri,m – корреляция доходности i-го актива (портфеля) с доходностью рыночного портфеля.
Поскольку величина бета определяется по отношению к рыночному портфелю, то бета самого рыночного портфеля равна единице, так как ковариация доходности рыночного портфеля с самим собой есть его дисперсия, отсюда: , где bm – бета рыночного портфеля.
Бета актива (портфеля) без риска равна нулю, потому что нулю равна ковариация доходности актива (портфеля) без риска с доходностью рыночного портфеля. Величина b актива (портфеля) говорит о том, насколько его риск больше или меньше риска рыночного портфеля. Активы с бетой больше единицы более рискованны, а с бетой меньше единицы – менее рискованны чем рыночной портфель. Относительно величины бета активы делят на агрессивные и защитные.
Бета агрессивных активов больше единицы, а защитных – меньше единицы. Если бета актива равна единице, то его риск равен риску рыночного портфеля. Бета может быть как положительной, так и отрицательной величиной. Положительное значение беты говорит о том, что доходности актива (портфеля) и рынка при изменении конъюнктуры меняются в одном направлении. Отрицательная бета показывает, что доходности актива (портфеля) и рынка меняются в противоположных направлениях.
Подавляющая часть активов имеет положительную бету. Бета актива (портфеля) показывает, в какой степени доходность актива (и соответственно его цена) будет реагировать на действие рыночных сил. Зная бету конкретного актива (портфеля), можно оценить, насколько должна измениться его ожидаемая доходность при изменении ожидаемой доходности рынка.
Например, бета бумаги равна +2. Это значит, что при увеличении ожидаемой доходности рыночного портфеля на 1% доходность бумаги возрастет на 2%, и, наоборот, при уменьшении доходности рыночного портфеля на 1% доходность бумаги снизится на 2%. Поскольку бета бумаги больше единицы, то она рискованнее рыночного портфеля.
Если бета бумаги равна 0,5, то при увеличении ожидаемой доходности рынка на 1% ожидаемая доходность бумаги должна возрасти только на 0,5%. Напротив, при снижении доходности рынка на 1% доходность бумаги уменьшится только на 0,5%. Таким образом, риск данной бумаги меньше риска рынка. Если бета равна -2, то при повышении доходности рыночного портфеля на 1% доходность актива снизится на 2% и, наоборот.
Активы
с отрицательной бетой являются
ценными инструментами для
Зная величину беты для каждого из активов, вкладчик может легко сформировать портфель требуемого уровня риска и доходности.
Бета портфеля – это средневзвешенное значение величин бета активов, входящих в портфель, где весами выступают их удельные веса в портфеле. Она рассчитывается по формуле: , где bP – бета портфеля; bi – бета i-го актива; qi – уд. вес i-го актива.
Пример. Инвестор формирует портфель из трех активов: А, В и С. bA = 0,8; bB = 0,95; bC = 1,3; qA = 0,5; qB = 0,2; qC = 0,3. Бета портфеля равна: 0,5×0,8 + 0,2×0,95 + 0,3×1,3 = 0,98.
Бета каждого актива рассчитывается на основе доходности актива и рынка за предыдущие периоды времени. Информацию о значениях беты можно получить от аналитических компаний, которые занимаются анализом финансового рынка, а также из периодической печати. [4, с. 280-282]
1.1.4. Линия рынка актива
CML
показывает соотношение риска
и доходности для эффективных
портфелей, но ничего не
Рис. 3. Линия рынка актива
Она представляет собой прямую линию, проходящую через две точки, координаты которых равны (0; rf) и (1; E(rm)). Таким образом, зная ставку без риска и ожидаемую доходность рыночного портфеля, можно построить SML. В состоянии равновесия рынка ожидаемая доходность каждого актива и портфеля, независимо от того, эффективный он или нет, должна располагаться на SML.
Следует еще раз подчеркнуть, что если на CML находятся только эффективные портфели, то на SML располагаются как широко диверсифицированные, так и неэффективные портфели и отдельные активы. Ожидаемую доходность актива (портфеля) определяют с помощью уравнения SML.
Пример. rf = 15%, E(rm) = 25%, bi = 1,5. Определить E(ri).
Наклон SML определяется отношением инвесторов к риску в различных условиях рыночной конъюнктуры. Если у вкладчиков оптимистичные прогнозы на будущее, то наклон SML будет менее крутой, так как в условиях хорошей конъюнктуры инвесторы согласны на более высокие риски (поскольку они менее вероятны на их взгляд) при меньших значениях ожидаемой доходности (рис. 4. SML1).
Рис. 4. Наклон SML в зависимости от ожиданий будущей конъюнктуры
Напротив, в преддверии неблагоприятной конъюнктуры SML примет более крутой наклон, так как в этом случае инвесторы в качестве компенсации потребуют более высокую ожидаемую доходность на приобретаемые активы для тех же значений риска (рис. 4. SML2). Если у инвесторов меняются ожидания относительно ставки без риска, это приведет к сдвигам SML. При увеличении rf SML сдвинется вверх, при понижении – вниз, как показано на рис. 5. [4, с. 282-284]
Рис.
5. Сдвиг SML при изменении
ставки без риска
1.1.5. Альфа
Согласно САРМ цена актива будет изменяться до тех пор, пока он не окажется на SML. На практике можно обнаружить активы, которые неверно оценены рынком относительно уровня его равновесной ожидаемой доходности.
Если эта оценка не соответствует реальному инвестиционному качеству актива, то в следующий момент рынок изменит свое мнение в направлении более объективной оценки. В результате мнение рынка будет стремиться к некоторому равновесному (т. е. верному) уровню оценки. В реальной практике периодически происходит изменение конъюнктуры рынка, что вызывает и изменение оценок в отношении ожидаемой равновесной доходности.
Информация о работе Характеристика и применение моделей оценки финансовых активов САРМ и АРТ