Моделирование производственных и экономических процессов

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 06:25, курсовая работа

Краткое описание

В Главе 1 раскрываются задачи линейного программирования, приведена общая постановка задачи, описана целевая функция и система ограничений, приводятся методы решения задач линейного программирования. Далее описаны основы симплексного метода, который применяется для решения задачи моделирования выпуска кондитерской продукции. Также приведена общая постановка транспортной задачи.
В Главе 2 – приведено решение задачи моделирования выпуска видеотехники симплексным методом. Получено оптимальное распределение поставок видеотехники, при котором целевая функция (стоимость продукции) получила максимальное значение.
В Главе 3 – приведено решение транспортной задачи такими методами, как: метод северо-западного угла, метод минимального элемента по строке, метод минимального элемента по столбцу, метод минимального элемента. Методом потенциалов решена транспортная задача, получено оптимальное минимальное решение.

Оглавление

Введение ………………………………………………………………………...
Глава 1. Моделирование как метод научного познания…………….………..3
1.1 Особенности применения метода математического моделирования в экономике…………………………………………………………………6
1.2 Классификация экономико-математических моделей…………………7
1.3 Этапы экономико-математического моделирования…………………10
Глава 2. Симплексный метод оптимальных продаж …………………………14
2.1 Расчеты оптимальных продаж элементов компьютерной продукции.23
2.2 Алгоритм задачи…………………………………………………………24
Глава 3.Транспортная задача……………………………………………………25
3.1 Постановка задачи………………………………………………………25
3.2 Алгоритм решения транспортной задачи................................................27
Заключение……………………………………………………………………31
Литература……………………………………………………………………32

Файлы: 1 файл

loki.doc

— 384.00 Кб (Скачать)

Наиболее часто необходимость возврата к предшествующим этапам моделирования возникает при подготовке исходной инфориации (этап 4). Может обнаружиться, что необходимая информация отсутствует или же затраты на ее подготовку слишком велики. Тогда приходится возвращаться к постановке задачи и ее формализации, изменяя их так, чтобы приспособиться к имеющейся информации.

Поскольку экономико-математические задачи могут быть сложны по своей структуре, иметь большую размерность, то часто случается, что известные алгоритмы и программы для ЭВМ не позволяют решить задачу в первоначальном виде. Если невозможно в короткий срок разработать новые алгоритмы и программы, исходную постановку задачи и модель упрощают: снимают и объединяют условия, уменьшают число факторов, нелинейные соотношения заменяют линейными, усиливают детерминизм модели и т.д.

Недостатки, которые не удается исправить на промежуточных этапах моделирования, устраняются в последующих циклах. Но результаты каждого цикла имеют и вполне самостоятельное значение. Начав исследование с построения простой модели, можно быстро получить полезные результаты, а затем перейти к созданию более совершенной модели, дополняемой новыми условиями, включающей уточненные математические зависимости.

По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дефференциация моделей по уровням абстракции и идеализации.

Теория математического анализа моделей экономики развилась в особую ветвь современной математики - математическую экономику. Модели, изучаемые в рамках математической экономики, теряют непосредственную связь с экономической реальностью; они имеют дело с исключительно идеализированными экономическими объектами и ситуациями. При построении таких моделей главным принципом является не столько приближение к реальности, сколько получение возможно большего числа аналитических результатов посредством математических доказательств. Ценность этих моделей для экономической теории и практики состоит в том, что они служат теоретической базой для моделей прикладного типа.

Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.

 

 

 

 

 

 

 

 

 

 

 

Глава II

 

2.2 Симплексный метод

 

Математическое программирование занимается изучение экстремальных задач и поиском методов их решения. Задачи математического программирования формулируются следующим образом : найти экстремум некоторой функции многих переменных f ( x1, x2, ... , xn ) при ограничениях gi ( x1, x2, ... , xn ) * bi , где gi - функция, описывающая ограничения, * - один из следующих знаков £ , = , ³ , а bi - действительное число, i = 1, ... , m. f называется функцией цели ( целевая функция ).

Линейное программирование - это раздел математического программирования, в котором рассматриваются методы решения экстремальных задач с линейным функционалом и линейными ограничениями, которым должны удовлетворять искомые переменные.

Задачу линейного программирования можно сформулировать так . Найти max

при условии :

a11 x1 + a12 x2 + . . . + a1n xn £ b1 ;

a21 x1 + a22 x2 + . . . + a2n xn £ b2 ;

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

am1 x1 + am2 x2 + . . . + amn xn £ bm ;

x1 ³ 0, x2 ³ 0, . . . , xn ³ 0 .

Эти ограничения называются условиями неотрицательности. Если все ограничения заданы в виде строгих равенств, то данная форма называется канонической.

 

В матричной форме задачу линейного программирования записывают следующим образом. Найти max cT x

при условии

A x £ b ;

x ³ 0 ,

где А - матрица ограничений размером ( m´n), b(m´1) - вектор-столбец свободных членов, x(n ´ 1) - вектор переменных, сТ = [c1, c2, ... , cn ] - вектор-строка коэффициентов целевой функции.

Решение х0 называется оптимальным, если для него выполняется условие сТ х0 ³ сТ х , для всех х Î R(x).

Поскольку min f(x) эквивалентен max [ - f(x) ] , то задачу линейного программирования всегда можно свести к эквивалентной задаче максимизации.

Для решения задач данного типа применяются методы:

1) графический;

2) табличный ( прямой, простой ) симплекс - метод;

3) метод искусственного базиса;

4) модифицированный симплекс - метод;

5) двойственный симплекс - метод.

 

Табличный симплекс - метод

 

Для его применения необходимо, чтобы знаки в ограничениях были вида “ меньше либо равно ”, а компоненты вектора b - положительны.

Алгоритм решения сводится к следующему :

Приведение системы ограничений к каноническому виду путём введения дополнительных переменных для приведения неравенств к равенствам.

Если в исходной системе ограничений присутствовали знаки “ равно ” или “ больше либо равно ”, то в указанные ограничения добавляются

искусственные переменные, которые так же вводятся и в целевую функцию со знаками, определяемыми типом оптимума.

Формируется симплекс-таблица.

Рассчитываются симплекс-разности.

Принимается решение об окончании либо продолжении счёта.

При необходимости выполняются итерации.

На каждой итерации определяется вектор, вводимый в базис, и вектор, выводимый из базиса. Таблица пересчитывается по методу Жордана-Гаусса или каким-нибудь другим способом.

 

Метод искусственного базиса

 

Данный метод решения применяется при наличии в ограничении знаков “ равно ”, “ больше либо равно ”, “ меньше либо равно ” и является модификацией табличного метода. Решение системы производится путём ввода искусственных переменных со знаком, зависящим от типа оптимума, т.е. для исключения из базиса этих переменных последние вводятся в целевую функцию с большими отрицательными коэффициентами m , а в задачи минимизации - с положительными m . Таким образом из исходной получается новая m - задача.

Если в оптимальном решении m - задачи нет искусственных переменных, это решение есть оптимальное решение исходной задачи. Если же в оптимальном решении m - задачи хоть одна из искусственных переменных будет отлична от нуля, то система ограничений исходной задачи несовместна и исходная задача неразрешима.

 

Модифицированный симплекс – метод

 

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры , которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Хорош для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс-разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана-Гаусса.

Особенности заключаются в наличии двух таблиц - основной и вспомагательной, порядке их заполнения и некоторой специфичности расчётных формул.

Постановка задачи

 

Для производства двух видов изделий А и В используется три типа технологического оборудования. На производство единицы изделия А идёт времени, часов : оборудованием 1-го типа - а1 , оборудованием 2-го типа - а2 , оборудованием 3-го типа - а3 . На производство единицы изделия В идёт времени, часов : оборудованием 1-го типа - b1 , оборудованием 2-го типа - b2 ,, оборудованием 3-го типа - b3 .

На изготовление всех изделий администрация предприятия может предоставить оборудование 1-го типа не более, чем на t1 , оборудование 2-го типа не более, чем на t2 , оборудование 3-го типа не более, чем на t3 часов.

Прибыль от реализации единицы готового изделия А составляет a рублей, а изделия В - b рублей.

Составить план производства изделий А и В, обеспечивающий максимальную прибыль от их реализации. Решить задачу простым симплекс-методом. Дать геометрическое истолкование задачи, используя для этого её формулировку с ограничениями-неравенствами.

а1 = 1 b1 = 5 t1 = 10 a = 2

а2 = 3 b2 = 2 t2 = 12 b = 3

а3 = 2 b3 = 4 t3 = 10

 

Разработка и описание алгоритма решения задачи

 

 

Построение математической модели задачи

 

 

На произв-во изделия А, часов

На произв-во изделия B, часов

Предпр-е предоставит, часов

Оборуд-е 1го типа

1

5

10

Оборуд-е 2го типа

3

2

12

Оборуд-е 3го типа

2

4

10

Прибыль от реализации, за ед. изд-я

2

3

 

Построение математической модели осуществляется в три этапа :

1. Определение переменных, для которых будет составляться математическая модель.

Так как требуется определить план производства изделий А и В, то переменными модели будут:

x1 - объём производства изделия А, в единицах;

x2 - объём производства изделия В, в единицах.

2. Формирование целевой функции.

Так как прибыль от реализации единицы готовых изделий А и В известна, то общий доход от их реализации составляет 2x1 + 3x2 ( рублей ). Обозначив общий доход через F, можно дать следующую математическую формулировку целевой функции : определить допустимые значения переменных x1 и x2 , максимизирующих целевую функцию F = 2x1 + 3x2 .

3. Формирование системы ограничений.

При определении плана производства продукции должны быть учтены ограничения на время, которое администрация предприятия сможет предоставить на изготовления всех изделий. Это приводит к следующим трём ограничениям :

x1 + 5x2 £ 10 ; 3x1 + 2x2 £ 12 ; 2x1 + 4x2 £ 10 .

Так как объёмы производства продукции не могут принимать отрицательные значения, то появляются ограничения неотрицательности :

x1 ³ 0 ; x2 ³ 0 .

Таким образом, математическая модель задачи представлена в виде : определить план x1 , x2 , обеспечивающий максимальное значение функции :

max F = max ( 2x1 + 3x2 )

при наличии ограничений :

x1 + 5x2 £ 10 ;

3x1 + 2x2 £ 12 ;

2x1 + 4x2 £ 10 .

x1 ³ 0 ; x2 ³ 0 .

 

3.2 Решение задачи вручную

 

Табличный метод ещё называется метод последовательного улучшения оценки. Решение задачи осуществляется поэтапно.

1. Приведение задачи к форме :

x1 + 5x2 £ 10 ;

3x1 + 2x2 £ 12 ;

2x1 + 4x2 £ 10 .

x1 ³ 0 ; x2 ³ 0 .

2. Канонизируем систему ограничений :

x1 + 5x2 + x3 = 10 ;

3x1 + 2x2 + x4 = 12 ;

2x1 + 4x2 + x5 = 10 .

x1 ³ 0 ; x2 ³ 0 .

A1 A2 A3 A4 A5 A0

3. Заполняется исходная симплекс-таблица и рассчитываются симплекс-разности по формулам :

d0 = - текущее значение целевой функции

di = - расчёт симплекс-разностей, где j = 1..6 .

 

 

C

2

3

0

0

0

Б

A0

A1

A2

A3

A4

A5

A3

0

10

1

5

1

0

0

A4

0

12

3

2

0

1

0

A5

0

10

2

4

0

0

1

 

d

0

-2

-3

0

0

0

Информация о работе Моделирование производственных и экономических процессов