Моделирование производственных и экономических процессов

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 06:25, курсовая работа

Краткое описание

В Главе 1 раскрываются задачи линейного программирования, приведена общая постановка задачи, описана целевая функция и система ограничений, приводятся методы решения задач линейного программирования. Далее описаны основы симплексного метода, который применяется для решения задачи моделирования выпуска кондитерской продукции. Также приведена общая постановка транспортной задачи.
В Главе 2 – приведено решение задачи моделирования выпуска видеотехники симплексным методом. Получено оптимальное распределение поставок видеотехники, при котором целевая функция (стоимость продукции) получила максимальное значение.
В Главе 3 – приведено решение транспортной задачи такими методами, как: метод северо-западного угла, метод минимального элемента по строке, метод минимального элемента по столбцу, метод минимального элемента. Методом потенциалов решена транспортная задача, получено оптимальное минимальное решение.

Оглавление

Введение ………………………………………………………………………...
Глава 1. Моделирование как метод научного познания…………….………..3
1.1 Особенности применения метода математического моделирования в экономике…………………………………………………………………6
1.2 Классификация экономико-математических моделей…………………7
1.3 Этапы экономико-математического моделирования…………………10
Глава 2. Симплексный метод оптимальных продаж …………………………14
2.1 Расчеты оптимальных продаж элементов компьютерной продукции.23
2.2 Алгоритм задачи…………………………………………………………24
Глава 3.Транспортная задача……………………………………………………25
3.1 Постановка задачи………………………………………………………25
3.2 Алгоритм решения транспортной задачи................................................27
Заключение……………………………………………………………………31
Литература……………………………………………………………………32

Файлы: 1 файл

loki.doc

— 384.00 Кб (Скачать)

 

Так как начальными базисными переменными являлись x1, x2, x3 в оптимальной симплексной таблице в соответствующих столбцах расположена матрица А-1 Изменим время работы на оборудование второго типа на величину D2, тогда время работы будет 12 + D2 .

Найдём базисное решение, соответствующее изменённому времени работы на оборудовании второго типа :

 

0.75 - D2 / 4 ³ 0 , D2 = 3;

2.75 + 3D2 / 4 ³ 0 , D2 = -3.66;

3.5 + D2 / 2 ³ 0 , D2 = -7.

Отсюда видно, что -3.66 £ D2 £ 3 , т.е. 8.34 £ b2 £ 15 .

Таким образом первоначальный интервал работы на оборудовании второго типа может быть увеличен до 15 часов или уменьшен до 8.34 часа без нарушения допустимого решения. Уменьшение времени влечёт за собой уменьшение единиц вырабатываемой продукции, поэтому является не целесообразным.

 

Исследование зависимости оптимального решения от изменений запасов ресурсов

 

Изменение свободного члена ограничения исходной задачи на величину D2 вызывает изменение целевой функции на DF = D i × y j .Если приращение времени работы берется из интервала допустимых изменений, значений двойственных оценок остаются неизменными. Таким образом, изменение целевой функции будет линейно зависеть от изменения времени работы.

В данном примере DF = D i × 12 = 12 × D i . Ищется зависимость значений целевой функции от изменения времени работы на оборудовании второго типа. Для этого изменяется время работы начиная от 0 часов с шагом h = 0.5 до 3 часов. Результаты измерений приведены в таблице 1.

Таблица 1

D2, часов

0

0.5

1

1.5

2

2.5

3

b2, часов

12

12.5

13

13.5

14

14.5

15

DF, руб.

0

6.25

13

20.25

28

36.25

45

F, руб.

9.25

-

-

-

-

-

 

 

 

Т.к. зависимость F( b2 ) - линейная, то достаточно подсчитать значение функции в двух крайних точках интервала.

Cледовательно, с увеличением времени работы на оборудовании второго типа на 2 часа увеличивается и объём изделий на общей стоимостью 28 рублей.

 

Графическое представление полученных результатов

 

Графический метод применим только для двух и менее переменных х, что подходит к данному заданию. Линии, соответствующие ограничения, строятся на осях Ох. Заштрихованная область - область допустимых стратегий.

x1 + 5x2 £ 10 ;

3x1 + 2x2 £ 12 ;

2x1 + 4x2 £ 10 .

x1 ³ 0 ; x2 ³ 0 .

1). x1 + 5x2 £ 10 ;

x1 = 0, x2 = 2 ;

x1 = 10, x2 = 0 .

2). 3x1 + 2x2 £ 12 ;

x1 = 0, x2 = 6 ;

x1 = 4, x2 = 0 .

3). 2x1 + 4x2 £ 10 ;

x1 = 0, x2 = 2.5 ;

x1 = 5, x2 = 0 .

4). Найдём экстремум функции :

F = 2x1 + 3x2 ,

 

 

 

2.2 Постановка задачи

 

Задача об использовании ресурсов.

Фирма производит два вида продукции: а) диски; б) дискеты. В количестве x1 и x2 по цене 14 и 2. Имеются три вида ресурсов: b1=13; b2=7; b3=11. Составить модель выпуска продукции с критерием максимального суммарного выпуска. Необходимо составить такой план производства продукции, при котором прибыль от ее реализации была бы максимальной.

 

 

Базис

Свободные члены

Переменные

x1

x2

x3

x4

x5

x3

14

12

-13

1

0

0

x4

26

6

8

0

1

0

3,25

x5

6

3

0

0

0

1

F

0

-4

-5

0

0

0

 

x1

3,25

0,75

1

0

1/8

0

4,3

x4

56,25

21,75

0

1

1,56

0

2,6

x5

6

3

0

0

0

1

2

F

16,25

-0,25

0

0

0,6

0

 

x1

2

1

0

0

0

1/3

 

x2

12,75

0

0

1

1,625

-5,6

 

x3

1,75

0

0

0

0,6

-0,25

 

F

18,5

0

1

0

1/8

0,083

 

 

 

 

 

Вывод: Таким образом, целевая функция получает  максимальное значение при  x1 = 2 и x2 =1,75и f = 4*2+5*1,75 = 18,5.

 

 

 

 

 

 

 

 

 

2.3 Алгоритм решения задачи симплексным методом

 

1)     Перевести неравенство в равенство путем введения новых переменных;

2)       Исходную расширенную систему занести в первую симплексную таблицу. В первый столбец таблицы занести основные переменные (базис), во втором столбце таблицы записываются свободные члены системы, далее идут столбцы, в которые вносятся все переменные. В последний столбец записываются оценочные отношения (). В последней строке указываются коэффициенты целевой функции с противоположным знаком.

3)       Проверяется выполнение критерия оптимальности при решении задачи на max (наличие в последней строке отрицательных коэффициентов). Если таких коэффициентов нет, то решение оптимально.

4)       Если критерий оптимальности не выполнен, то наибольший по модулю отрицательный элемент в последней строке определяет разрешающий столбец.

5)       При составлении оценочных ограничений в каждой строке необходимо пользоваться следующими правилами: 

а) если знаки свободного члена и коэффициентов при переменных имеют разные знаки, то ;

б)если свободные члены равны 0, а коэффициенты при переменной отрицательные, то ;

в) если коэффициент при переменной равен 0, то ;

г) если свободный член равен 0, а коэффициент при переменной > 0, то ;

6)       Найти  min , которая определяет разрешающую строку;

7)       На пересечении разрешающей строки и столбца найти разрешающий элемент;

8)       Перейти к следующей таблице по правилам:

а) в левом столбце записывается новый базис, вместо основной переменной новую переменную;

б) в столбцах, соответствующих основным переменным, проставляются 0 и 1, 1– напротив своей переменной, 0 – напротив чужой;

в) новая строка получается из старой, путем деления на разрешающий элемент;

г) остальные элементы вычисляются по правилу метода Гаусса;

д) далее перейти к следующей итерации.

 

 

 

 

 

 

 

 

 

Глава III

 

3.1 Постановка задачи

 

Метод северо-западного угла

 

Bj

Ai

210

190

220

180

140

4

140

5

 

6

1

140

0

70

3

 

2

1

 

520

2

 

4

120

7

220

8

180

 

F = 140*4+70*0+70*3+4*120+7*220+8*180=4230

 

Метод минимального элемента по столбцу

Bj

Ai

210

190

220

180

140

4

 

5

 

6

1

140

0

140

3

 

2

1

 

520

2

70

4

190

7

80

8

180

Информация о работе Моделирование производственных и экономических процессов