Моделирование производственных и экономических процессов

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 06:25, курсовая работа

Краткое описание

В Главе 1 раскрываются задачи линейного программирования, приведена общая постановка задачи, описана целевая функция и система ограничений, приводятся методы решения задач линейного программирования. Далее описаны основы симплексного метода, который применяется для решения задачи моделирования выпуска кондитерской продукции. Также приведена общая постановка транспортной задачи.
В Главе 2 – приведено решение задачи моделирования выпуска видеотехники симплексным методом. Получено оптимальное распределение поставок видеотехники, при котором целевая функция (стоимость продукции) получила максимальное значение.
В Главе 3 – приведено решение транспортной задачи такими методами, как: метод северо-западного угла, метод минимального элемента по строке, метод минимального элемента по столбцу, метод минимального элемента. Методом потенциалов решена транспортная задача, получено оптимальное минимальное решение.

Оглавление

Введение ………………………………………………………………………...
Глава 1. Моделирование как метод научного познания…………….………..3
1.1 Особенности применения метода математического моделирования в экономике…………………………………………………………………6
1.2 Классификация экономико-математических моделей…………………7
1.3 Этапы экономико-математического моделирования…………………10
Глава 2. Симплексный метод оптимальных продаж …………………………14
2.1 Расчеты оптимальных продаж элементов компьютерной продукции.23
2.2 Алгоритм задачи…………………………………………………………24
Глава 3.Транспортная задача……………………………………………………25
3.1 Постановка задачи………………………………………………………25
3.2 Алгоритм решения транспортной задачи................................................27
Заключение……………………………………………………………………31
Литература……………………………………………………………………32

Файлы: 1 файл

loki.doc

— 384.00 Кб (Скачать)

 

Так как при решении задачи на max не все симплекс-разности положительные, то оптимальное решение можно улучшить.

4. Определяем направляющий столбец j*. Для задачи на max он определяется минимальной отрицательной симплекс-разностью. В данном случае это вектор А2

5. Вектор i*, который нужно вывести из базиса, определяется по отношению :

min при аi j > 0

 

В данном случае сначала это А3 .

5. Заполняется новая симплекс-таблица по исключеню Жордана - Гаусса :

а). направляющую строку i* делим на направляющий элемент :

a i j = a i j / a i j , где j = 1..6

б). преобразование всей оставшейся части матрицы :

a ij = aij - a i j × aij , где i ¹ i* , j ¹ j*

В результате преобразований получаем новую симплекс-таблицу :

 

 

 

 

C

2

3

0

0

0

Б

A0

A1

A2

A3

A4

A5

A2

3

2

1/5

1

1/5

0

0

A4

0

8

13/5

0

-2/5

1

0

A5

0

2

6/5

0

-4/5

0

1

 

d

6

-7/5

0

3/5

0

0

 

Повторяя пункты 3 - 5, получим следующие таблицы :

 

 

 

C

2

3

0

0

0

Б

A0

A1

A2

A3

A4

A5

A2

3

5/3

0

1

1/3

0

-1/6

A4

0

11/3

0

0

4/3

1

-13/6

A1

2

5/3

1

0

-2/3

0

5/6

 

d

8 1/3

0

0

-1/3

0

7/6

 

 

 

C

2

3

0

0

0

Б

A0

A1

A2

A3

A4

A5

A2

3

3/4

0

1

0

-1/4

3/8

A3

0

11/4

0

0

1

3/4

-13/8

A1

2

7/2

1

0

0

1/2

-1/4

 

d

9 1/4

0

0

0

1/4

5/8

 

Так как все симплекс-разности положительны, то оптимальное решение найдено :

X = ( 7/2 , 3/4 , 11/4 , 0 , 0 ) ( единиц )

max F = 9 1/4 ( рублей )

 

Анализ модели на яувствительность

 

Построение двойственной задачи и её численное решение

 

Проведение анализа на чувствительность связано с теорией двойственности, поэтому в курсовой работе необходимо построить двойственную задачу и найти её численное решение.

Для рассматриваемой модели двойственная задача имеет вид :

min T( y ) = min ( 10y1 + 12y2 + 10y3 ) при условиях

y1 + 3y2 + 2y3 ³ 2 А1

5y1 + 2y2 + 4y3 ³ 3 А2

y1 ³ 0 , y2 ³0 , y3 ³ 0. А3, А4, А5

Оптимальное решение двойственной задачи получается при решении прямой задачи из последней симплекс-таблицы. В результате получаем оптимальное решение двойственной задачи :

Yопт = ( 0, 1/4, 5/8, 0, 0 ), для которого Т(yопт) = 9 1/4.

Оптимальное значение целевой функции в двойственной задачи совпадает с оптимумом целевой функции прямой задачи, в чём не трудно убедиться.

 

Определение статуса ресурсов

 

Ресурсы относятся к дефицитным, если оптимальный план предусматривает их полное использование, при частичном использовании ресурсов, они считаются не дефицитными. Статус ресурсов для любой модели линейного программирования можно установить непосредственно из оптимальной симплекс-таблицы исходной по значению дополнительных переменных. Положительное значение дополнительной переменной указывает на неполное использование соответствующего ресурса, т.е. на его недефицитность, нулевое значение дополнительной переменной указывает на дефицитность ресурса.

Для данного примера дополнительные переменные х4 и х5 равны нулю, следовательно, оборудование второго и третьего типов являются “дефицитными”, а первого типа - “недефицитным” ( х3 = 2,75 ). Такой же вывод можно сделать из решения двойственной задачи.

 

Определение значимости ресурсов

 

Значимость ресурса характеризуется величиной улучшения оптимального значения целевой функции F, приходящейся на единицу прироста данного ресурса. Значимость ресурсов всегда можно определить по значению двойственных переменных в оптимальном решении двойственной задачи.

В данном случае Yопт = ( 0, 1/4, 5/8, 0, 0 ). Таким образом, из двух “дефицитных” ресурсов оборудование второго типа имеет большую значимость и увеличении интервала работы на этом оборудовании более выгодно с точки зрения влияния на значение целевой функции.

 

Определение допустимого интервала изменения запаса ресурсов

 

Изменение отведённого администрацией предприятия времени ( т.е. правых частей ограничений ) может привести к недопустимости текущего решения. Поэтому важно определить диапазон изменений компонент вектора ограничений, в котором допустимость решений не нарушается.

Оборудование второго типа, которое используется для изготовления изделий, является “дефицитным и имеет большую значимость. Определим диапазон допустимых изменений интервала работы на этом оборудовании. Оптимальная симплекс-таблица задачи имеет вид :

 

 

 

C

2

3

0

0

0

Б

A0

A1

A2

A3

A4

A5

A2

3

3/4

0

1

0

-1/4

3/8

A3

0

11/4

0

0

1

3/4

-13/8

A1

2

7/2

1

0

0

1/2

-1/4

 

d

9 1/4

0

0

0

1/4

5/8

Информация о работе Моделирование производственных и экономических процессов