Автор: Пользователь скрыл имя, 14 Декабря 2012 в 09:15, контрольная работа
Задание 1. Изложить материал по выбранной теме. Проиллюстрировать теоретические положения примерами.
1.7Двойственные оценки как инструмент определения эффективности отдельных вариантов
Задание 2. Решить графическим методом типовую задачу оптимизации.
2.2. Совхоз для кормления животных использует два вида корма. В дневном рационе животного должно содержаться не ме¬нее 6 единиц питательного вещества А и не менее 12 единиц пита¬тельного вещества В. Какое количество корма надо расходовать ежедневно на одно животное, чтобы затраты были минимальны¬ми? Исходные данные приведены ниже.
Задание 3. Исследовать динамику экономического показателя на основе анализа одномерного временного ряда.
Вариант 2. В течение девяти последовательных недель фиксировался спрос Y(t) (млн. р.) на кредитные ресурсы финансовой компании. Временной ряд Y(t) этого показателя (повариантно) приведен ниже в таблице.
Подобие между моделируемым
объектом и моделью может быть
физическое, структурное, функциональное,
динамическое, вероятностное и
На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.
Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы , закона или их совокупности.
Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D), а на оси абсцисс – цена (Р). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот. Конечно, данную зависимость можно выразить и словесно, но графически она намного нагляднее (рис. 1.1).
Рис. 1.1. Графическая модель, отображающая зависимость между спросом и ценой
Физические или вещественные
модели создаются для конструирования
пока еще несуществующих объектов.
Создать модель самолета или ракеты
для проверки ее аэродинамических свойств
значительно проще и
При моделировании используется аналогия между объектом – оригиналом и его моделью. Аналогии бывают следующими:
1) внешняя аналогия (модель самолета, корабля, микрорайона, выкройка);
2) структурная аналогия (водопроводная сеть и электросеть моделируются с помощью графов, отражающих все связи и пересечения, но не длины отдельных трубопроводов);
3) динамическая аналогия (по поведению системы) – маятник моделирует электрический колебательный контур.
Математические модели
относятся ко второму и третьему
типу. Смысл математического
Экономико-математические
модели отражают наиболее существенные
свойства реального объекта или
процесса с помощью системы уравнений.
Единой классификации экономико-
По степени агрегирования объектов моделирования различают модели:
· микроэкономические;
· одно-, двухсекторные (одно-, двухпродуктовые);
· многосекторные (многопродуктовые);
· макроэкономические;
· глобальные.
По учету фактора времени модели подразделяются на:
· статические;
· динамические.
В статических моделях
экономическая система описана
в статике, применительно к одному
определенному моменту времени.
Это как бы снимок, срез, фрагмент
динамической системы в какой-то
момент времени. Динамические модели описывают
экономическую систему в
По цели создания и применения различают модели:
· балансовые;
· эконометрические;
· оптимизационные;
· сетевые;
· систем массового обслуживания;
· имитационные (экспертные).
В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.
Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.
Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.
Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.
Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.
Имитационная модель наряду с машинными решениями содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае персональный компьютер, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.
По учету фактора неопределенности модели подразделяются на:
· детерминированные (с однозначно определенными результатами);
· стохастические (с различными, вероятностными результатами).
По типу математического аппарата различают модели:
· линейного и нелинейного программирования;
· корреляционно-регрессионные;
· матричные;
· сетевые;
· теории игр;
· теории массового обслуживания и т.д.
Особенности экономических наблюдений и измерений
Уже длительное время
главным тормозом практического
применения математического моделирования
в экономике является наполнение
разработанных моделей
В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые также могут выполняться посредством моделирования.
Методы экономических наблюдений и использования результатов этих наблюдений разрабатываются экономической статистикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.
В экономике многие процессы являются массовыми; они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.
Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого, экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за экономическими процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учетом ее запаздывания.
Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффектного использования математического моделирования является совершенствование экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных сопоставлений различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.
В процессе моделирования
возникает взаимодействие «первичных»
и «вторичных» экономических
измерителей. Любая модель народного
хозяйства опирается на определенную
систему экономических
Основные этапы построения математической модели.
Чтобы воспользоваться
математической моделью для конкретной
производственно-экономической
Этап 1. ВЫБОР ОБЪЕКТА МОДЕЛИРОВАНИЯ (например: склад готовой продукции; организация выпуска новой продукции или системы транспортных перевозок и т.п.).
Этап 2. АНАЛИЗ ПРОБЛЕМНОЙ СИТУАЦИИ, сложившейся в рассматриваемом объекте моделирования. Например, для нормального функционирования склада готовой продукции необходимо увязать скорость потребления продукции со временем поставки и размерами складских площадей, оборотными средствами, которые всегда оказываются ограниченными.
Этап 3. ТИП И ЧИСЛО НЕНАБЛЮДАЕМЫХ ПАРАМЕТРОВ (отыскиваемых значений ЦФ и основных переменных X j), определение которых позволит выбрать обоснованное управление конкретного экономического объекта.
Этап 4. ТИП И ЧИСЛО НАБЛЮДАЕМЫХ ПАРАМЕТРОВ (задаваемых значений правых частей ограничений b[i], коэффициентов затрат a[ij] , граничных условий для отыскиваемых переменных.
Этап 5. УСЛОВИЕ АДЕКВАТНОСТИ, то есть уверенность в том, что математическая модель экономического объекта полностью (или в главных чертах) характеризует его действительное оптимальное функционирование. Обычно адекватность ставится в зависимость от численного значения критерия оптимальности (или нескольких таких критериев при многокритериальной оптимизации).
Этап 6. ИСПОЛЬЗУЕМЫЙ МАТЕМАТИЧЕСКИЙ АППАРАТ, соответствующий конкретному математическому описанию производственно-экономической ситуации. (Например, аналитические связи между основными параметрами движения запасов).
Этап 7. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ экономического объекта: оптимальных значений основных переменных и целевой функции. Эти значения составляют основу экономического анализа конкретного объекта, за которым следуют выводы.
Этап 8. ПРИНЯТИЕ РЕШЕНИЯ. По результатам оптимальных значений и сделанных на этапе 7 выводов принимается решение по управлению экономическим объектом.
Можно сделать вывод, что для понимания сущности моделирования важно не упускать из виду, что моделирование – не единственный источник знаний об объекте. Процесс моделирования «погружен» в более общий процесс познания. Это обстоятельство учитывается не только на этапе построения модели, но и на завершающей стадии, когда происходит объединение и обобщение результатов исследования, получаемых на основе многообразных средств познания.
Моделирование – циклический
процесс. Это означает, что за первым
восьмиэтапным циклом может последовать
второй, третий и т.д. При этом знания
об исследуемом объекте
По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дифференциация моделей по уровням абстракции и идеализации.
Теория математического
анализа моделей экономики
Информация о работе Двойственные оценки как инструмент определения эффективности отдельных вариантов