Роль человека в системе обеспечения работоспособности машин

Автор: Пользователь скрыл имя, 19 Января 2012 в 02:15, контрольная работа

Краткое описание

Инженерная психология есть научная дисциплина, изу¬чающая объективные закономерности процессов информа¬ционного взаимодействия человека и техники с целью ис¬пользования их в практике проектирования, создания и эксплуатации СЧМ. Процессы информационного взаимо¬действия человека и техники являются предметом инже¬нерной психологии.

Оглавление

Введение

1. Особенности классификации системы «человек – машина».

2. Показатели качества системы «человек – машина».

3. Оператор в системе «человек машина».

Заключение

Список литературы

Файлы: 1 файл

Документ Microsoft Word.docx

— 77.36 Кб (Скачать)

 Системы «человек — машина» относятся также  к классу целеустремленных систем. В общем случае считается, что система действует целеустремленно, если она продолжает преследовать одну и ту же цель, изменяя свое поведение при изменении внешних условий. Существенной особенностью целеустремленных систем является их способность получать одинаковые результаты различными способами. Системы этого класса могут изменять свои задачи; они выбирают как сами задачи, так и средства их реализации. Целеустремленность СЧМ обусловлена тем, что в нее включен человек. Именно он ставит цели, определяет задачи и выбирает средства достижения цели.

  Системы  «человек — машина» можно рассматривать  и как адаптивные системы. Свойство  адаптации заключается в приспособлении СЧМ к изменяющимся условиям работы, в изменении режима функционирования в соответствии с новыми условиями. Для повышения эффективности СЧМ необходимо предусмотреть возможность адаптации как внутри самой системы, так и по отношению к внешней среде. До недавнего времени свойство адаптации СЧМ реализовалось благодаря приспособительным' возможностям человека, гибкости и пластичности его поведения, возможности его изменения в зависимости от конкретной обстановки. В настоящее время, как отмечалось в гл. 1, на повестку дня ставится вопрос о создании СЧМ, в которых свойство адаптации реализуется путем соответствующего технического обеспечения. Речь идет о создании таких технических средств, которые могут изменять свои параметры и условия деятельности в зависимости от текущего конкретного психофизиологического состояния человека и показателей эффективности его деятельности.

 И наконец, системы  «человек — машина» можно отнести к классу самоорганизующихся систем, т. е. систем, способных к уменьшению энтропии (неопределенности) после вывода их из устойчивого, равновесного состояния под действием различного рода возмущений. Это свойство становится возможным благодаря целенаправленной деятельности человека, способности его планировать свои действия, принимать правильные решения и реализовывать их в соответствии с возникшими обстоятельствами. Способность к адаптации и самоорганизации обусловливает такое важное свойство систем «человек — машина», каким является их живучесть.

 Из всего  сказанного видно, что рассмотренные  особенности СЧМ определяются наличием в их составе человека, его возможностью правильно решать возникающие задачи в зависимости от конкретных условий и обстановки. Это лишний раз показывает, что исходным пунктом анализа и описания СЧМ должна быть целесообразная деятельность человека.

 На основании  вышеизложенного можно в общих  чертах охарактеризовать некоторые важнейшие принципы системного подхода к изучению СЧМ. Суть их сводится к следующему. 
1. Возможно более полное и точное определение назначения системы, ее целей и задач. Это требует, в свою очередь, анализа состава и значимости отдельных целей, подцелей и задач; определения возможности их осуществимости и требуемых для этого средств и ресурсов; определения показателей эффективности и целевой функции СЧМ. 
2. Исследование структуры системы, и прежде всего состава входящих в нее компонентов, характера межкомпонентных связей и связей системы с внешней средой, пространственно-временной организации компонентов системы и их связей, границ системы, ее изменчивости и особенностей на различных стадиях существования (жизненного цикла). 
3. Последовательное изучение характера функционирования системы, в том числе: всей системы в целом, отдельных подсистем в пределах целого, изменчивости функций и их особенностей на разных стадиях существования системы. 

4. Рассмотрение  системы в динамике, в развитии, т. е. на различных этапах  ее жизненного цикла: при проектировании, производстве и эксплуатации.

      На последнем из этих принципов следует остановиться особо. В ряде случаев рамки инженерной психологии неправомерно суживают, отводя ей лишь роль проектировочной дисциплины. Проектировочная сущность инженерной психологии приобретает в настоящее время решающее значение. Однако только ею не ограничивается проблематика инженерной психологии. Для того чтобы были реализованы все потенциальные возможности систем «человек — машина», необходим также правильный учет инженерно-психологических требований в процессе их производства и эксплуатации. Это приводит к необходимости создания единой системы инженерно-психологического обеспечения систем «человек — машина» на всех этапах их жизненного цикла.

    Под инженерно-психологическим обеспечением понимается весь комплекс мероприятий, связанных с организацией учета человеческого фактора в процессе проектирования, производства и эксплуатации СЧМ. Проблема инженерно-психологического обеспечения имеет два основных аспекта: целевой и организационно-методический (табл. 3.1). Первый из них связан с непосредственным выполнением работ по учету человеческого фактора на каждом из этапов жизненного цикла СЧМ; его содержание целиком и полностью определяется проблематикой инженерной психологии. Второй аспект связан с организационно-методическим обеспечением работ по учету человеческого фактора. 

 Содержание  инженерно-психологического обеспечения СЧМ

  
Этап жизненного цикла 
  
Аспект инженерно-психологического обеспечения 
  
целевой 
  
организационно-методический 
  
Проектирование 
  
Определение функций человека    в    проектируемой СЧМ и оценка его психофизиологических возможностей по их выполнению   (инженерно-психологическое проектирование) 
  
Разработка    нормативных и      справочно-методических материалов   по   инженерно-психологическому    проектированию  деятельности   оператора. Организация труда  коллектива проектировщиков 
  
Производство 
  
Учет   психофизиологических свойств человека в процессе  производства   (условия труда, режимы труда и отдыха, взаимосвязи операторов в групповой деятельности и т. п.) 
  
Разработка   нормативных и      справочно-методических 
 
материалов по учету человеческого фактора в процессе производства 
  
Эксплуатация 
  
Учет   психофизиологических возможностей человека  при эксплуатации  техники      (профессиональный отбор, обучение, трениров-•гки, формирование операторских коллективов, организация их труда) 
  
Разработка    методик    по профессиональному    отбору (если это необходимо) и подготовке операторов, подбору коллективов,      организации труда.    Разработка    нормативных   документов,   регламентирующих      применение этих методик 

  
 
 
         Он включает в себя разработку  необходимых справочно-методических  материалов, с помощью которых можно выполнять эти работы, а также разработку нормативных документов, регламентирующих (в частности, утверждающих) степень и полноту учета человеческого фактора при проектировании, производстве и эксплуатации СЧМ. 
 
              При отсутствии таких документов проведение работ по учету человеческого фактора не будет являться обязательным мероприятием, и поэтому задача инженерно-психологического обеспечения не может считаться полностью решенной. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                        2. Показатели качества системы «человек – машина». 
 
     Любая СЧМ призвана удовлетворять те или иные потребности человека и общества. Для этого она должна обладать определенными свойствами, которые закладываются при проектировании СЧМ и реализуются в процессе эксплуатации. Под свойством СЧМ понимается ее объективная способность, проявляющаяся в процессе эксплуатации. Количественная характеристика того или иного свойства системы, рассматриваемого применительно к определенным условиям ее создания или эксплуатации, носит название показателя качества СЧМ.

  В нашей  стране разработана определенная  номенклатура показателей качества промышленной продукции. Она включает в себя 8 групп показателей, с помощью которых можно количественно оценивать различные свойства продукции. К ним относятся: показатели назначения, надежности и долговечности, технологичности, стандартизации и унификации, а также эргономический, эстетический, патентно-правовой и экономический показатели.  

  Не рассматривая  подробно все показатели, остановимся  лишь на тех из них, которые  влияют на деятельность человека в СЧМ или зависят от результатов его деятельности.

 Быстродействие  (время цикла регулирования Tц) определяется временем прохождения информации по замкнутому контуру «человек — машина»: 
 
          k 
 
Тц=∑  ti 
 
                           i=1 
 
где Tц — время задержки (обработки) информации в i-м звене СЧМ; kчисло последовательно соединенных звеньев СЧМ; в качестве их могут выступать как технические звенья, так и операторы. 
 
        Надежность характеризует безошибочность (правильность) решения стоящих перед СЧМ задач. Оценивается она вероятностью правильного решения задачи, которая, по статистическим данным, определяется отношением   
 
                   
 
        Pпр=1 – mош / N 
где mош и  N соответственно число ошибочно решенных и общее число решаемых задач. 
 
           Важной характеристикой деятельности оператора является также точность его работы. На этой характеристике следует остановиться особо, ибо в ряде случаев происходит некоторое смешение ее с надежностью. В качестве исходного понятия для определения обеих характеристик используется понятие «ошибка оператора», для расчета обеих характеристик предлагаются одинаковые формулы и т. д. Фактически же надежность и точность представляют собой различные показатели, характеризующие разные стороны деятельности оператора. Правильное толкование обоих этих показателей дается в работе. 
 
              Под точностью работы оператора следует понимать степень отклонения некоторого параметра, измеряемого, устанавливаемого или регулируемого оператором, от своего истинного, заданного или номинального значения. Количественно точность работы оператора оценивается величиной погрешности, с которой оператор измеряет, устанавливает или регулирует данный параметр: 
 
  
 
          

=
Iн - Iоп 
где Iн — истинное или номинальное значение параметра; Iоп — фактически измеряемое или регулируемое оператором значение этого параметра. 
 
Величина погрешности может иметь как положительный, так и отрицательный знак. Понятия ошибки и погрешности не тождественны между собой: не всякая погрешность является ошибкой. До тех пор пока величина погрешности не выходит за допустимые пределы, она не является ошибкой, и только в противном случае ее следует считать ошибкой и учитывать также при оценке надежности. Понятие погрешности наиболее важно для тех случаев, когда измеряемый или регулируемый оператором параметр представляет непрерывную величину. Так, например, можно говорить о точности определения координат самолета оператором радиолокационной станции и т. д. 
 
               В работе оператора следует различать случайную и систематическую погрешности. Случайная погрешность оператора оценивается величиной среднеквадратической погрешности, систематическая погрешность — величиной математического ожидания отдельных погрешностей. Методы их определения приведены в работах. 
 
         Своевременность решения задачи СЧМ оценивается вероятностью того, что стоящая перед СЧМ задача будет решена за время, не превышающее допустимое: 
 
                                      Тдоп 
 
     Рсв = Р {Тц < Тдоп} © φ (Т) dT,  
 
                                            0 
 
где φ 
(Т)функция плотности времени решения задачи системой «человек — машина». 
 
Эта же вероятность по статистическим данным оценивается по выражению 
 
 
        Рсв= 1 – mнс / N 
где mнс — число несвоевременно решенных СЧМ задач. 
 
При определении величин mош и mнс, а следовательно, и при оценке вероятностей Pпр и Рсв не имеет значения, за счет каких причин (некачественной работы машины или некачественной деятельности оператора) неправильно или несвоевременно решена задача системой «человек — машина». 
 
        Поскольку большинство СЧМ работают в рамках определенных временных ограничений, то несвоевременное решение задачи приводит к недостижению цели, стоящей перед системой «человек — машина». Поэтому в этих случаях в качестве общего показателя надежности используется вероятность правильного (Рпр) и своевременного (Рсв) решения задачи 
 
        Рсмч= PпрРсв , 
 
   
 
   Такой показатель используется, например, при применении обобщенного структурного метода оценки надежности СЧМ [см. 31]. 
 
        Безопасность труда человека в СЧМ оценивается вероятностью безопасной работы 
                                     n 
 
           Рсчм= 1 - ∑ Pвоз I Pош I
 
                         i=1                               
 
где Рвоз i вероятность возникновения опасной или вредной для человека производственной ситуации  i-го  типа; РОШ i — вероятность неправильных действий оператора в  i-й  ситуации; n — число возможных травмоопасных ситуаций. 
 
        Опасные и вредные ситуации могут создаваться как техническими причинами (неисправность машины, аварийная ситуация, неисправность защитных сооружений), так и нарушениями правил и мер безопасности со стороны людей. При этом, в условиях автоматизированного производства, когда контакт человека с рабочими частями машин и оборудования сравнительно невелик, большая роль в возникновении опасных и вредных для человека ситуаций принадлежит психофизиологическим факторам. Их влияние также нужно учитывать при определении показателя Рбт
 
       Степень автоматизации СЧМ характеризует относительное количество информации, перерабатываемой автоматическими устройствами. Эта величина определяется по формуле 
           Ka= 1 – Ноп / Нсмч
где Ноп количество информации, перерабатываемой оператором; Нсчм — общее количество информации, циркулирующей в системе «человек — машина».

 Для каждой СЧМ  существует некоторая оптимальная  степень автоматизации (koпт), при которой эффективность СЧМ становится максимальной. При этом чем сложнее СЧМ, тем больше потери эффективности из-за неправильного выбора степени автоматизации. Это видно из сравнения кривых 1 и 2 на рис.  Оптимальная степень автоматизации устанавливается в процессе решения задачи распределения функций между человеком и машиной.

 
  
    
 

  
 
 
   
Зависимость эффективности СЧМ от степени автоматизации: 1 — для    простых    систем;    2 для    сложных    систем 
 
 
          Экономический показатель характеризует полные затраты на систему «человек — машина». В общем случае эти затраты складываются из трех составляющих: затрат на создание (изготовление) системы Си, затрат на подготовку операторов Соп и эксплуатационных расходов Сэ. По отношению к процессу эксплуатации затраты Си и Соп являются, как правило, капитальными. Тогда полные приведенные затраты в СЧМ определяются выражением 
 
   Wсчм=Сэ + Еноп + Си),  
 
где Ен  — нормативный коэффициент экономической эффективности капитальных затрат. 
 
       При заданной величине Wсчм  путем перераспределения затрат между отдельными составляющими Си, Соп и Сэ можно получить различные значения общей эффективности СЧМ. И, наоборот, заданная эффективность СЧМ может быть обеспечена с помощью различных затрат в зависимости от распределения их между отдельными составляющими. Методы технико-экономической оптимизации СЧМ (получение заданной эффективности при минимуме Wсчм или получение максимума эффективности при заданной величине Wсчм) путем перераспределения затрат Си, Соп и Сэ

   Большое значение при анализе и оценке СЧМ имеют эргономические показатели. Они учитывают совокупность специфических свойств системы «человек — машина», обеспечивающих возможность осуществления в ней деятельности человека (группы людей). Эргономические показатели представляют собой иерархическую структуру, включающую в себя целостную эргономическую характеристику (эргономичность СЧМ), комплексные (управляемость, обслуживаемость, освояемость и обитаемость СЧМ), групповые (социально-психологические, психологические, физиологические, антропометрические, гигиенические) и единичные показатели.  
 
        С помощью рассмотренных показателей можно оценить одно или несколько однотипных свойств СЧМ. Иногда их может оказаться недостаточно для решения инженерно-психологических задач (например, при выборе одного из нескольких конкурирующих вариантов СЧМ). В этом случае нужно дать интегральную оценку качества системы «человек — машина» как совокупности всех ее основных свойств. Для этого используется понятие эффективности СЧМ, под которой понимается степень приспособленности системы к выполнению возложенных на нее функций. При определении эффективности СЧМ необходимо учесть следующие правила: для получения полной интегральной оценки следует учитывать всю совокупность частных показателей качества СЧМ; 
частные показатели должны входить в общую оценку с некоторым «весом», характеризующим их важность в данной системе; 
поскольку частные показатели имеют различный физический смысл и измеряются в разных величинах, они должны быть приведены к безразмерному и нормированному относительно некоторого эталона виду. 
 
При этом следует отметить, что все частные показатели с точки зрения их влияния на эффективность могут быть повышающими (надежность, безопасность, своевременность и т. п.) или понижающими (затраты, время решения задачи и др.)- Поэтому нормирование производится следующим образом: 
для повышающих показателей 
                                                           Эi= Ei / Emax i 
для понижающих показателей 
                                                           Эi= Ei / Emin i 
где Эi и Ei — соответственно нормированное и абсолютное значение i-го частного показателя; Emax i и emin i — максимальное (минимальное) значение i-гo частного показателя, которое имеет существующая или проектируемая аналогичная система.

Информация о работе Роль человека в системе обеспечения работоспособности машин