Контрольная работа по "Английскому языку"

Автор: Пользователь скрыл имя, 18 Декабря 2010 в 09:09, контрольная работа

Краткое описание

Controlling Robots with the Mind. Astronomical hunt ends in success.Augmented Reality: A New Way of Seeing. Atomic memory developed. Examination Topics for Advanced Students.

Файлы: 48 файлов

Общенаучные и специальные методы исследования государственного управления.docx

— 27.81 Кб (Открыть, Скачать)

Astronomical hunt ends in success.doc

— 25.50 Кб (Открыть, Скачать)

Augmented Reality.doc

— 91.50 Кб (Открыть, Скачать)

Atomic memory developed.doc

— 21.50 Кб (Открыть, Скачать)

A YEAR OF CHALLENGE AND ACCOMPLISHMENT FOR NASA.doc

— 31.00 Кб (Открыть, Скачать)

Constant Changes.doc

— 69.50 Кб (Открыть, Скачать)

Controlling Robots.doc

— 49.50 Кб (Скачать)

October 2002 issue

Controlling Robots with the Mind

People with nerve or limb injuries may one day be able to command wheelchairs, prosthetics and even paralyzed arms and legs by "thinking them through" the motions

By Miguel A. L. Nicolelis and John K. Chapin

 

Belle, our tiny owl monkey, was seated in her special chair inside a soundproof chamber at our Duke University laboratory. Her right hand grasped a joystick as she watched a horizontal series of lights on a display panel. She knew that if a light suddenly shone and she moved the joystick left or right to correspond to its position, a dispenser would send a drop of fruit juice into her mouth. She loved to play this game. And she was good at it.

Belle wore a cap glued to her head. Under it were four plastic connectors. The connectors fed arrays of microwires--each wire finer than the finest sewing thread--into different regions of Belle's motor cortex, the brain tissue that plans movements and sends instructions for enacting the plans to nerve cells in the spinal cord. Each of the 100 microwires lay beside a single motor neuron. When a neuron produced an electrical discharge--an "action potential"--the adjacent microwire would capture the current and send it up through a small wiring bundle that ran from Belle's cap to a box of electronics on a table next to the booth. The box, in turn, was linked to two computers, one next door and the other half a country away.

In a crowded room across the hall, members of our research team were getting anxious. After months of hard work, we were about to test the idea that we could reliably translate the raw electrical activity in a living being's brain--Belle's mere thoughts--into signals that could direct the actions of a robot. Unknown to Belle on this spring afternoon in 2000, we had assembled a multijointed robot arm in this room, away from her view, that she would control for the first time. As soon as Belle's brain sensed a lit spot on the panel, electronics in the box running two real-time mathematical models would rapidly analyze the tiny action potentials produced by her brain cells. Our lab computer would convert the electrical patterns into instructions that would direct the robot arm. Six hundred miles north, in Cambridge, Mass., a different computer would produce the same actions in another robot arm, built by Mandayam A. Srinivasan, head of the Laboratory for Human and Machine Haptics (the Touch Lab) at the Massachusetts Institute of Technology. At least, that was the plan.

If we had done everything correctly, the two robot arms would behave as Belle's arm did, at exactly the same time. We would have to translate her neuronal activity into robot commands in just 300 milliseconds--the natural delay between the time Belle's motor cortex planned how she should move her limb and the moment it sent the instructions to her muscles. If the brain of a living creature could accurately control two dissimilar robot arms--despite the signal noise and transmission delays inherent in our lab network and the error-prone Internet--perhaps it could someday control a mechanical device or actual limbs in ways that would be truly helpful to people.

Finally the moment came. We randomly switched on lights in front of Belle, and she immediately moved her joystick back and forth to correspond to them. Our robot arm moved similarly to Belle's real arm. So did Srinivasan's. Belle and the robots moved in synchrony, like dancers choreographed by the electrical impulses sparking in Belle's mind. Amid the loud celebration that erupted in Durham, N.C., and Cambridge, we could not help thinking that this was only the beginning of a promising journey.

In the two years since that day, our labs and several others have advanced neuroscience, computer science, microelectronics and robotics to create ways for rats, monkeys and eventually humans to control mechanical and electronic machines purely by "thinking through," or imagining, the motions. Our immediate goal is to help a person who has been paralyzed by a neurological disorder or spinal cord injury, but whose motor cortex is spared, to operate a wheelchair or a robotic limb. Someday the research could also help such a patient regain control over a natural arm or leg, with the aid of wireless communication between implants in the brain and the limb. And it could lead to devices that restore or augment other motor, sensory or cognitive functions.

The big question is, of course, whether we can make a practical, reliable system. Doctors have no means by which to repair spinal cord breaks or damaged brains. In the distant future, neuroscientists may be able to regenerate injured neurons or program stem cells (those capable of differentiating into various cell types) to take their place. But in the near future, brain-machine interfaces (BMIs), or neuroprostheses, are a more viable option for restoring motor function. Success this summer with macaque monkeys that completed different tasks than those we asked of Belle has gotten us even closer to this goal.

From Theory to Practice 
Recent advances in brain-machine interfaces are grounded in part on discoveries made about 20 years ago. In the early 1980s Apostolos P. Georgopoulos of Johns Hopkins University recorded the electrical activity of single motor-cortex neurons in macaque monkeys. He found that the nerve cells typically reacted most strongly when a monkey moved its arm in a certain direction. Yet when the arm moved at an angle away from a cell's preferred direction, the neuron's activity didn't cease; it diminished in proportion to the cosine of that angle. The finding showed that motor neurons were broadly tuned to a range of motion and that the brain most likely relied on the collective activity of dispersed populations of single neurons to generate a motor command.

There were caveats, however. Georgopoulos had recorded the activity of single neurons one at a time and from only one motor area. This approach left unproved the underlying hypothesis that some kind of coding scheme emerges from the simultaneous activity of many neurons distributed across multiple cortical areas. Scientists knew that the frontal and parietal lobes--in the forward and rear parts of the brain, respectively--interacted to plan and generate motor commands. But technological bottlenecks prevented neurophysiologists from making widespread recordings at once. Furthermore, most scientists believed that by cataloguing the properties of neurons one at a time, they could build a comprehensive map of how the brain works--as if charting the properties of individual trees could unveil the ecological structure of an entire forest!

Fortunately, not everyone agreed. When the two of us met 14 years ago at Hahnemann University, we discussed the challenge of simultaneously recording many single neurons. By 1993 technological breakthroughs we had made allowed us to record 48 neurons spread across five structures that form a rat's sensorimotor system--the brain regions that perceive and use sensory information to direct movements.

Crucial to our success back then--and since--were new electrode arrays containing Teflon-coated stainless-steel microwires that could be implanted in an animal's brain. Neurophysiologists had used standard electrodes that resemble rigid needles to record single neurons. These classic electrodes worked well but only for a few hours, because cellular compounds collected around the electrodes' tips and eventually insulated them from the current. Furthermore, as the subject's brain moved slightly during normal activity, the stiff pins damaged neurons. The microwires we devised in our lab (later produced by NBLabs in Denison, Tex.) had blunter tips, about 50 microns in diameter, and were much more flexible. Cellular substances did not seal off the ends, and the flexibility greatly reduced neuron damage. These properties enabled us to produce recordings for months on end, and having tools for reliable recording allowed us to begin developing systems for translating brain signals into commands that could control a mechanical device.

With electrical engineer Harvey Wiggins, now president of Plexon in Dallas, and with Donald J. Woodward and Samuel A. Deadwyler of Wake Forest University School of Medicine, we devised a small "Harvey box" of custom electronics, like the one next to Belle's booth. It was the first hardware that could properly sample, filter and amplify neural signals from many electrodes. Special software allowed us to discriminate electrical activity from up to four single neurons per microwire by identifying unique features of each cell's electrical discharge.

 

Examination Topics for Advanced Students.doc

— 25.50 Кб (Открыть, Скачать)

Gas Between Stars.doc

— 49.00 Кб (Открыть, Скачать)

HUBBLE MEASURES ATMOSPHERE ON WORLD AROUND ANOTHER STAR.doc

— 29.00 Кб (Открыть, Скачать)

Donald Savage.doc

— 31.00 Кб (Открыть, Скачать)

Time Machine.doc

— 70.50 Кб (Открыть, Скачать)

Hall of UFO Mysteries.doc

— 56.00 Кб (Открыть, Скачать)

How to Build a Time Machine.doc

— 99.00 Кб (Открыть, Скачать)

iPAQ vs. other new Pocket PCs.DOC

— 29.50 Кб (Открыть, Скачать)

Jupiter-sized planet discovered.doc

— 97.50 Кб (Открыть, Скачать)

Farthest Planet.doc

— 30.00 Кб (Открыть, Скачать)

Little Big Science.doc

— 78.00 Кб (Открыть, Скачать)

Kirsten Larson.doc

— 26.50 Кб (Открыть, Скачать)

Looking For Life Among The Stellar Garbage.doc

— 34.00 Кб (Открыть, Скачать)

Loony Moons.doc

— 29.00 Кб (Открыть, Скачать)

Last Mile by Laser.doc

— 72.50 Кб (Открыть, Скачать)

Life may swim within distant moons.doc

— 27.50 Кб (Открыть, Скачать)

list of papers.doc

— 37.00 Кб (Открыть, Скачать)

Dwayne Brown.doc

— 26.50 Кб (Открыть, Скачать)

Nanoelectronics.doc

— 45.50 Кб (Открыть, Скачать)

Microprocessors in 2020.doc

— 39.00 Кб (Открыть, Скачать)

Bob Jacobs.doc

— 25.00 Кб (Открыть, Скачать)

Bob Jacobs.doc

— 25.00 Кб (Открыть, Скачать)

Michael Braukus.doc

— 27.50 Кб (Открыть, Скачать)

NASA TECHNOLOGY HELPS INDUSTRIAL LEADERS BUILD FACILITIES.doc

— 30.50 Кб (Открыть, Скачать)

One Rocket to Launch Two Missions.doc

— 85.00 Кб (Открыть, Скачать)

Protostars.doc

— 43.50 Кб (Открыть, Скачать)

Quasars.DOC

— 25.50 Кб (Открыть, Скачать)

Real time.doc

— 46.00 Кб (Открыть, Скачать)

Research into the Creation of the Laser-induced Fluorescence Diagnostics of the Condition of Heart Tissues, Transplants and Allografts in Cardiosurgery.doc

— 31.50 Кб (Открыть, Скачать)

Dolores Beasley.doc

— 40.00 Кб (Открыть, Скачать)

Satellites Shed Light on a Warmer World.doc

— 30.50 Кб (Открыть, Скачать)

Sonja Alexander.doc

— 31.00 Кб (Открыть, Скачать)

The 2001 Nobel Prize in Physics.doc

— 44.50 Кб (Открыть, Скачать)

The Galaxy and the Universe.doc

— 50.00 Кб (Открыть, Скачать)

The Great Dark Spot.doc

— 51.00 Кб (Открыть, Скачать)

The Great Dark Spot.doc

— 51.00 Кб (Открыть, Скачать)

The Uncertainties of Technological Innovation.doc

— 37.50 Кб (Открыть, Скачать)

Sarah Keegan.doc

— 29.50 Кб (Открыть, Скачать)

U.S. CENTENNIAL OF FLIGHT COMMISSION ANNOUNCES OFFICIAL.doc

— 34.50 Кб (Открыть, Скачать)

Why the Big Bang is Wrong.doc

— 40.50 Кб (Открыть, Скачать)

10тыс - english.doc

— 67.00 Кб (Открыть, Скачать)

Информация о работе Контрольная работа по "Английскому языку"