Автор: Пользователь скрыл имя, 13 Марта 2011 в 19:30, реферат
Способ получения показателя по существу раскрывается конкретным видом суммируемых признаков и их функций и действиями, производимыми над полученными суммами. В целом это выражает правило получения данного показателя на основании индивидуальных значений признаков, или, иначе говоря, алгоритм получения показателя. Таким образом, наименование показателя придает ему качественную принадлежность, отражая его статистическую структуру и содержание, а также указывает время, место, объект или группу объектов, к которым он относится, единицу измерения и (по мере надобности) другие его особенности.
Введение 3
Виды статистических показателей 4
Абсолютные величины 5
Относительные величины…. 6
Виды относительных величин: 10
Средние величины 11
Понятие средней величины и значение метода средних величин 12
Условия применения средних величин в анализе 13
Виды средних величин, способы их вычисления 13
Правило мажорантности и свойства средней арифметической ………………………………14
Заключение 15
Литература
Статистический показатель — это количественно выраженное определенное свойство, качество совокупности в целом или ее частей.
Полученные в результате сводки численности объектов и суммы представляют собой определенные характеристики совокупности и ее частей, т. е. являются статистическими показателями. Но ими статистические показатели далеко не исчерпываются, так как многие показатели получаются дальнейшей обработкой результатов сводки. Таким образом, переход от индивидуальных значений признаков к статистическому показателю, характеризующему совокупность или ее часть, осуществляется через суммирование, или агрегирование. Это может быть суммирование самих заданных признаков или величин, полученных для каждой единицы совокупности на их основании. Полученные суммированием итоги уже являются показателями или для получения показателя над ними, должны быть проделаны дальнейшие вычисления.
Исходя из этого, можно сформулировать общее определение статистического показателя как функции сумм значений функций признаков объектов, входящих в совокупность. Заметим, что это определение охватывает и численность объектов (для чего надо положить суммируемую функцию равной у каждого объекта единице), и простую сумму значений некоторого признака (если суммируемую функцию положить равной значению этого признака).
Таким образом, показатель, в конечном счете, является функцией индивидуальных значений признаков. То, что объединение в сводный показатель происходит обязательно через суммирование, прямо вытекает из рассмотренных ранее черт статистической совокупности. При этом, во-первых, суммироваться могут не сами значения, а некоторые их функции, во-вторых, полученные в сводке суммы могут подвергаться дальнейшим вычислениям.
В
некоторых случаях
Способ получения показателя по существу раскрывается конкретным видом суммируемых признаков и их функций и действиями, производимыми над полученными суммами. В целом это выражает правило получения данного показателя на основании индивидуальных значений признаков, или, иначе говоря, алгоритм получения показателя. Таким образом, наименование показателя придает ему качественную принадлежность, отражая его статистическую структуру и содержание, а также указывает время, место, объект или группу объектов, к которым он относится, единицу измерения и (по мере надобности) другие его особенности.
Статистическая совокупность может быть охарактеризована многими показателями, каждый из которых отражает определенное ее свойство. Всё множество показателей, характеризующих определенные свойства совокупностей, существенные с точки зрения цели ее изучения, должно составлять систему взаимосвязанных элементов. Взаимосвязь показателей системы должна отражать объективно существующие, присущие данной совокупности взаимосвязи.
По статистической структуре показатели, входящие в систему, можно условно разделить на три группы: абсолютные (объемные) величины, относительные величины и средние величины.
Показатель по совокупности, полученный как сумма значений признака отдельных ее единиц, как правило, носит то же наименование, что и сам признак. Например, продукция промышленности есть сумма продукции предприятий. В таких случаях и то, и другое наименование обычно называют «показатель». Но, строго говоря, такой показатель для единицы совокупности еще нельзя назвать статистическим, это — признак единицы. И только обобщенный по совокупности, он становится в точном смысле слова статистическим показателем, отвечающим сформулированному выше определению.
Статистический показатель должен быть точно определенным. Это выдвигает ряд требований к его наименованию. В нем должны быть указаны [11]:
По статистической структуре различаются следующие виды статистических показателей:
Цель работы: описать систему статистических показателей
Задачи
работы: ознакомиться с показателями
средней и вариации и применить полученные
знания на примере в практической части
работы
Абсолютные величины представляют собой характеристику всего исследуемого явления по отдельно взятому признаку. Абсолютные величины являются результатом первичного учета, заключающегося в первоначальной регистрации предметов, событий хозяйственной деятельности, отражаемой в соответствующей документации (накладных, актах, квитанциях и т.д.). Поэтому, как правило, в абсолютных величинах измеряются такие явления, которые в статистике характеризуются через первичные признаки.
Характерной чертой признаков, выражаемых через абсолютные величины, является существование их независимо от исследователя. Действительно, такой признак, например, как численность крупного рогатого скота при характеристике фермерского хозяйства будет существовать, независимо от того, будет ли осуществляться статистическое исследование этого хозяйства или нет.
По степени охвата исследуемой совокупности выделяют несколько видов абсолютных величин [7]:
1)
индивидуальные, характеризующие отдельные
единицы совокупности (например, масса
единицы произведенной
2)
групповые, отражающие размеры
признака в отдельных частях
совокупности (например, размер посевной
площади, занятой только
3)
общие, отражающие размеры
Такое разделение абсолютных величин определяет метод их получения: индивидуальные абсолютные величины образуются еще на стадии статистического наблюдения, тогда как групповые и общие получаются в результате обработки полученных статистических данных, то есть на стадии группировки и сводки.
Абсолютные величины всегда именованы, то есть всегда имеют определенные единицы измерения. Выделяют натуральные, условно-натуральные и стоимостные единицы измерения. Существуют также трудовые единицы измерения.
Натуральные единицы измерения используются в случае изучения свойств объекта исследования. Например, объем экспорта нефти оценивается в баррелях и тоннах, строительство дорого – в километрах, и т.д.
Натуральные
единицы измерения могут быть
простыми и сложными. Например, затраты
рабочего времени на производство продукции
может выражаться в численности
рабочих, занятых на производстве (простая
натуральная единица измерения)
При
необходимости совместного
Путем
соотнесения уровня явления в
натуральных единицах измерения
с уровнем этого явления, выраженным
в условно-натуральных
Примеры условно-натуральных единиц измерения, применяемых в российской статистике:
1)
условное топливо,
2)
условные консервные банки,
Стоимостные единицы измерения абсолютных величин позволяют изучать различные по своему содержанию явления, несопоставимые в натуральных единицах измерения. Кроме того, стоимостные измерители позволяют оценить исследуемое явления в денежном выражении, что также является важным при проведении экономического анализа.
Значимость стоимостных единиц измерения заключается в их применении при расчете макроэкономических показателей, отражающих общий уровень развития страны, например внутреннего валового продукта, национального дохода и др [9]. Действительно, являясь характеристикой социально-экономического развития общества, система макроэкономических показателей отражает и результаты деятельности института государства, измеряет его эффективность. Поэтому, каждый государственный служащий должен знать, какие показатели включаются в систему макроэкономического анализа, по каким методикам они рассчитываются, в каких единицах измерения выражаются, и должен уметь сравнивать эти показатели с уровнем развития других стран.
Социально-экономические явления невозможно исследовать только на основе данных первичного учета, представленных в виде абсолютных величин. Необходимо сравнивать стороны явлений, выраженные первичными признаками, сопоставлять абсолютные величины между собой, что позволит получить гораздо более глубокое представление об исследуемом явлении. Соотнесение абсолютных величин можно называть сутью относительных величин. Из сущности относительных величин вытекает метод их расчета: соотнесение сравниваемого показателя с другим показателем, принятым за основу, базу для сравнения. Показатель, с которым сравнивается изучаемый признак, так и называется – базисный.
Как правило, в относительных величинах измеряются те явления, которые в статистике выражаются через вторичные признаки. Таким образом, относительные величины также являются вторичными по отношению к абсолютным величинам, которые применяются при измерении первичных признаков. Более того, относительные величины вторичны сравнительно с абсолютными величинами и по методу расчета.
При построении относительных величин необходимо правильно их интерпретировать. Так, соотнося размер основных фондов в стоимостном выражении с численностью рабочих, эксплуатирующих основные фонды, мы получим, сколько рублей стоимости основных фондов приходится на одного рабочего. Или при соотношении числа книг, имеющихся в наличии в библиотеке, с числом читателей, записанных в этой библиотеке, мы получим, сколько книг приходится на одного читателя. А если соотнести число книг, которые выдавались на абонемент с общим числом книг, имеющихся в фондах библиотеки, то результат можно интерпретировать как долю выдаваемых книг в общей численности книг. То есть, правило построения относительных величин заключается в возможности их объяснения с точки зрения анализа исследуемого явления.
В результате расчета относительных величин получаются:
а) коэффициенты, отражающие число раз, в которое изменилось исследуемое явления;
б) проценты, которые соответствуют коэффициенту, умноженному на 100;
в) промилле, выражающие размер исследуемого явления на тысячу единиц совокупности, например, численность врачей-терапевтов на каждую тысячу населения. Применяется такая форма расчета ввиду слишком больших различий между сравниваемыми величинами.
г) При соотнесении показателей, выраженных различными единицами измерения получают величины, которые в общем виде можно отобразить как:
Например (соответственно приведенным
формулам): руб./тыс. руб.; чел/км2; руб./чел.;
кг/руб.
При
соотнесении между собой
Относительная величина динамики. Под динамикой в статистике понимается изменения явления во времени. Следовательно, данный вид относительных величин исследует изменения, происходящие в явлении с течением времени. То есть, относительная величина динамики будет представлять собой соотнесение одного и того же показателя по одному и тому же объекту, но в разные периоды времени.
Относительные величины динамики также называют «темпами роста», обозначающимися как «Тр» или индексами. Период, в котором явление принимается за основу для сравнения в статистике принято называть «базисным» и обозначать как «х0». Период, в котором происходит сравниваемое явление, называется «отчетным», «текущим» и обозначается как «х1». Относительная величина динамики рассчитывается по следующей формуле:
Уровень сравниваемого явления может также называться «фактически уровнем», то есть уровнем, фактически достигнутым в отчетном периоде, он имеет обозначение «хф». Тогда, относительная величина динамики примет следующий вид:
Относительная величина планового задания. В статистике значения признаков исследуемого явления, которые должны быть достигнуты в предстоящем периоде, называются планируемыми значениями.
Относительная величина планового задания (ОВп.з.) рассчитывается как соотнесение планируемого уровня явления (хпл) с уровнем этого же явления, который принимается за основу для сравнения (х0). В качестве базы сравнения принимается фактически достигнутая величина признака исследуемого явления в периоде, который предшествует планируемому, причем не обязательно непосредственное предшествование, за основу для сравнения может приниматься любой предыдущий период. Таким образом, относительная величина планового задания имеет форму:
То
есть, данная относительная величина
определяет, в процентном отношении,
во сколько раз планируемый
Относительная величина выполнения плана. Понятие «выполнение плана» подразумевает сравнение планового задания и фактически полученного результата. Следовательно, относительная величина выполнения плана (ОВв.п.) представляет собой соотнесение фактически достигнутого уровня явления в исследуемом периоде (хф,х1) с планируемым уровнем этого явления (хпл): То есть, данная относительная величина показывает, во сколько раз фактический уровень исследуемого явления в отчетном периоде отличается от запланированного уровня явления на этот период.
Взаимосвязь между относительными величинами динамики, планового задания, выполнения плана. При наличии планируемого уровня в построении относительных величин, отражающих изменения явления во времени, анализу подвергаются три уровня: базисный, планируемый и фактический. Последовательный расчет изменения сначала планируемой величины относительно базисной, затем фактической величины относительно планируемой позволяет судить об изменении явления за исследуемый период в целом, т.е. изменении фактического уровня относительно базисного или характеризует относительную величину динамики.
Произведение
относительных величин
Данное выражение отображает взаимосвязь относительных величин планового задания, выполнения плана и динамики [1].
Относительные показатели, характеризующие структуру объекта. Под структурой в статистике понимаются сведения о делении исследуемой совокупности на отдельные группы, о величине каждой из групп и об их значении для совокупности в целом. Поэтому относительная величина структуры (d) в статистике представляет собой соотнесение части явления (f) и явления в целом (суммы всех частей, f):
То есть относительная величина структуры показывает, какую долю (или сколько процентов) составляет часть совокупности в общем объеме совокупности. Синонимом понятия «относительная величина структуры» являются также понятия «удельный вес», «доля».
Необходимо отметить особенность данных, для которых может рассчитываться относительная величина структуры: данные должны быть сгруппированы, то есть пройти первичную обработку после наблюдения.
Расчет изменения относительной величины структуры во времени. Для полноценного анализа недостаточно исследовать только структуру явления, необходимо сопоставить распределение явления по группам в изучаемом периоде с распределением, существовавшим в предыдущих периодах. Построение относительных величин структуры явления для нескольких периодов позволяет выявить изменения в структуре явления, происходящие в течение времени. Такие изменения в статистике называют «структурными сдвигами». Расчет структурных изменений явления во времени ( ) определяется соотношением изменения части явления во времени ( ) с изменением во времени явления в целом ( ):
Относительная величина координации. Относительная величина координации характеризует соотношение частей целого между собой. То есть, помимо определения удельного веса различных частей сравнительно со всей совокупностью, применяются также относительные величины, отражающие сравнение различных частей друг с другом.
Относительная величина координации (ОВК) имеет форму, опирающуюся на ее сущность – сравнение одной части исследуемой совокупности (fх) с другой частью этой же совокупности (fу):
Величина показывает сколько единиц сравниваемой части приходится на 1, 10, 100 или 1000 единиц части, принятой за основу для сравнения. Например, сколько женщин приходится на 1000 мужчин.
Относительная
величина сравнения.
Относительная величина сравнения отражает
соотнесение показателей, имеющих одинаковые
содержание, единицы измерения, период
или момент времени, но рассчитанные для
разных объектов [3]. То есть данную относительную
величину выделяют в отдельный вид, т.к.
она позволяет сопоставлять различные
объекты по изучаемым признакам. Форма
относительной величины сравнения (ОВС)
обусловлена ее содержанием: соотнесение
определенной характеристики объекта
А (ХА) с такой же характеристикой объекта
В за тот же период (ХВ):
В качестве примера расчета относительных величин сравнения можно привести следующие показатели:
1)
соотношение объемов добычи
2)
сопоставление среднегодового
Относительная
величина интенсивности.
Под интенсивностью понимается частота
появления явления. Относительные величины
интенсивности (ОВИ) отражают степень
распространенности явления:
Приведем
пример относительных величин
1) соотнесение числа различного рода потребительских товаров с численностью населения будет характеризовать уровень обеспеченности населения потребительскими товарами;
2)
соотношение производственных
3) соотношение числа транспортных средств, проходящих в двух направлениях по участку определенной длины (например, 1 км) в течение определенного периода времени с числом часов в исследуемом отрезке времени, охарактеризует интенсивность движения на данном участке за единицу времени;
4)
соотнесение удвоенного
Необходимо
подчеркнуть, что относительные
величины интенсивности всегда являются
результатом соотношения
Значения, отображающие размер признака общественного явления, различаются между собой, и это, как указывалось выше, называют вариацией явления [10]. С другой стороны, различные элементы принадлежат одному и тому же явлению, оказывают влияние друг на друга, поэтому значения признаков у таких элементов сближаются, что дает возможность рассматривать их как единую совокупность. Для исследования совокупности, обладающей различными значениями признака у отдельных ее единиц, необходимо иметь единую типическую для совокупности величину признака, позволяющую анализировать совокупность и сравнивать динамические изменения в совокупности. Для этого применяется средняя величина. Средняя величина рассчитывается только по количественным признакам, т.е. определение средней по атрибутивным признакам невозможно.
Тогда,
средняя величина это: наиболее типичное
для совокупности значение признака;
объем признака совокупности, распределенный
поровну между единицами
Признак, для которого рассчитывается средняя величина, в статистике называется «усредняемый». Среднюю величину принято обозначать как . Важно отметить, что в процессе осреднения совокупное значение уровней признака или конечное его значение (в случае расчета средних уровней в ряду динамики) должно оставаться неизменным. Другими словами, при расчете средней величины объем исследуемого признака не должен быть искажен, и выражения, составляемые при расчетах средней, обязательно должны иметь смысл.
Средняя величина является показателем, рассчитываемым путем сопоставления абсолютных или относительных величин. Для получения требуемой средней величины необходимо корректно определить те показатели, которые следует соотнести, т.е. построить исходное соотношение средней. Исходное соотношение отражает сущность рассчитываемой средней величины. Для каждой средней величины может быть только одно исходное соотношение. Например, средняя урожайность рассчитывается путем соотнесения валового сбора (выраженного в центнерах) с общим размером посевной площади (выраженного в га):
Действительно, никакие другие показатели при соотнесении друг с другом не отразят средний уровень урожайности. Тогда, данная дробь будет называться исходным соотношением средней.
Средняя
величина имеет двойственный характер:
с одной стороны она
Средняя
величина может принимать такие
значения, которые не присущи непосредственно
ни одному из элементов изучаемой
совокупности, кроме того, на практике
часто средняя величина для дискретного
признака выражается как для непрерывного.
Например, среднее число родившихся на
каждую тысячу населения в регионе: в регионе
имеются несколько населенных пунктов,
в каждом из которых складывается собственный
уровень рождаемости. Чтобы рассчитать
среднюю рождаемость по региону необходимо
численность всех родившихся младенцев
соотнести с численностью населения и
умножить на 1000:
Результат расчета средней величины по данному показателю может выражаться в дробных числах, несмотря на то, что показатель «число родившихся» является целым числом.
Значения исследуемого признака принимают различные размеры, находящиеся в определенном интервале. То есть существует возможность говорить о распределении размеров признака, подверженном влиянию целого ряда факторов. Тогда средняя величина является показателем центра распределения [8].
Необходимо подчеркнуть важность понимания средней величины как центра распределения, так как на этом основывается дальнейший статистический анализ.
Обязательным условием расчета средних величин для исследуемой совокупности является ее однородность. Действительно, допустим, что отдельные элементы совокупности, вследствие подверженности влиянию некоторого случайного фактора, имеют слишком большие (или слишком малые) величины изучаемого признака, существенно отличающиеся от остальных. Такие элементы повлияют на размер средней для данной совокупности, поэтому средняя не будет выражать наиболее характерную для совокупности величину признака.
Если исследуемое явление не является однородным, то его разбивают на группы, содержащие только однородные элементы. Для такого явления рассчитываются сначала средние по группам, которые называются групповые средние, – они будут выражать наиболее типичную величину явления в каждой группе. Затем рассчитывается для всех элементов общая средняя величина, характеризующая явление в целом, – она рассчитывается как средняя из групповых средних, взвешенных по числу элементов совокупности, включенных в каждую группу.
На практике, однако, безусловное выполнение данного условия повлекло бы за собой ограничение возможностей статистического анализа общественных процессов. Поэтому, часто средние величины рассчитываются по неоднородным явлениям. Например, при расчете величины средней заработной платы по Тюменской области, когда совместно анализируется заработная плата труда в автономных округах и в южных районах Тюменской области, а затем полученный средний уровень заработной платы труда сопоставляется с соседними сибирскими регионами.
Еще одним важным условием применения средних величин в анализе является достаточное количество единиц в совокупности, по которой рассчитывается среднее значение признака. Достаточность анализируемых единиц обеспечивается корректным определением границ исследуемой совокупности, т.е. закладывается еще на начальном этапе статистического исследования. Данное условие становится решающим при применении выборочного наблюдения[5], когда необходимо обеспечить репрезентативность выборки.
Определение максимального и минимального значения признака в изучаемой совокупности также является условием применения средней величины в анализе. В случае больших отклонений между крайними значениями и средней, необходимо проверить принадлежность экстремумов к исследуемой совокупности. Если сильная изменчивость признака вызвана случайными, кратковременными факторами, то, возможно, крайние значения не характерны для совокупности. Следовательно, их следует исключить из анализа, т.к. они оказывают влияние на размер средней величины [6].
В статистике выделяют несколько видов средних величин:
1. По наличию признака-веса:
а) невзвешенная средняя величина; б) взвешенная средняя величина.
2. По форме расчета:
а)
средняя арифметическая величина; б)
средняя гармоническая
в) средняя геометрическая величина; г) средняя квадратическая, кубическая и т.д. величины.
3. По охвату совокупности:
а) групповая средняя величина; б) общая средняя величина.
Рассмотрим подробнее отдельные виды средних величин:
Средние величины различаются в зависимости от учета признаков, влияющих на усредняемую величину:
Если средняя величина рассчитывается для признака, без учета влияния на него каких-либо других признаков, то такая средняя величина называется средней невзвешенной или простой средней.
Если имеются сведения о влиянии на осредняемый признак некоторого признака или нескольких признаков, которые необходимо учесть при расчете для корректного расчета средней величины, то рассчитывается средняя взвешенная.
По форме расчета выделяют несколько видов средних величин, которые образованы из единой степенной средней величины. Степенная средняя величина имеет форму: k – показатель степени; i –i-тый элемент совокупности; n – число наблюдений (число единиц совокупности).
При
разных показателях степени k получаем,
соответственно, различные по форме средние
величины:
Степень средней величины | Название | Формула |
k = -1 | Гармоническая | |
k = 0 | Геометрическая | |
k = 1 | Арифметическая | |
k = 2 | Квадратическая |
Выбор формы средней обусловлен исходным соотношением, суть которого приводилась выше.
Средняя арифметическая величина. Средняя арифметическая величина – наиболее характерная форма средней, на примере которой можно выявить все свойства средней.
Формула расчет средней арифметической величины имеет следующий вид: – значение изучаемого признака для i-того элемента совокупности; n – число наблюдений (число единиц совокупности).
Средняя арифметическая невзвешенная величина. Если показатель степени равен 1, то получаем следующую форму средней:
xi – индивидуальные значения признака у отдельных единиц совокупности.
Такая средняя величина называется средней арифметической простой (невзвешенной).
Данная форма средней величины является наиболее распространенной. Она получается путем соотношения суммарного объема индивидуальных значений признака каждого элемента совокупности и числа элементов совокупности. Средняя арифметическая невзвешенная применяется в том случае, если имеются сведения об объеме осредняемого признака.
Средняя арифметическая взвешенная величина. Если имеются сведения о количестве или доле единиц совокупности с тем или иным значением осредняемого признака, то рассчитывается средняя арифметическая взвешенная: xi – индивидуальные значения осредняемого признака у отдельных единиц совокупности; fi – значения признака-веса для каждой единицы совокупности.
В зависимости от осредняемых данных выделяют несколько случаев применения средней арифметической взвешенной величины [2]:
- расчет средней арифметической взвешенной в случае, если осредняемый признак выражен в абсолютных величинах, а признак-вес представлен первичным показателем;
- расчет средней арифметической взвешенной в случае, если осредняемый признак представлен в интервальном виде, т.е. когда данные, находящиеся в числителе исходного соотношения, рассчитываются следующим образом: сначала определяются середины интервалов ( ); затем серединное значение для каждого интервала умножается на значение признака-веса для этого интервала (fi); полученные произведения суммируются ( ). Полученный таким образом числитель соотносится с суммой значений признака-веса.
- расчет средней арифметической взвешенной, если в качестве осредняемого признака принимается удельный вес (т.е. когда совокупность поделена на подгруппы, в каждой из которых определено количество единиц, обладающих изучаемым признаком, доля таких единиц в общей численности подгруппы, и необходимо рассчитать среднее значение доли во всех подгруппах ( )):
– представленное в абсолютном выражении количество единиц j-ой подгруппы, обладающих изучаемым признаком; i = 1, 2, 3…n – количество всех единиц j-ой подгруппы; k – количество подгрупп в совокупности;
То есть, если при расчете других средних арифметических взвешенных соотносились различные показатели, то средний удельный вес сохраняет те же показатели, которые применялись для расчета индивидуального значения удельного веса. Кроме того, при расчете удельного веса оба соотносимых показателя должны выражаться в абсолютных величинах. Если же необходимые данные отсутствуют, то следует привести показатели к сопоставимому виду.
Средняя гармоническая невзвешенная величина. Если показатель степени равен (-1), то образуется следующая форма средней:
xi
– индивидуальные значения
Такая средняя величина называется средней гармонической простой (невзвешенной). Она взаимосвязана со средней арифметической невзвешенной как величина, обратная средней арифметической, рассчитанная из обратных значений признака.
Средняя гармоническая невзвешенная величина применяется в том случае, если согласно исходному соотношению средней необходимо, чтобы в знаменателе располагались обратные значения осредняемого признака. Данный вид средней применяется также, если значения признаков-весов одинаковы, следовательно, образуется тождество между средней гармонической взвешенной и средней гармонической невзвешенной.
Средняя гармоническая взвешенная величина. Средняя гармоническая взвешенная величина имеет следующий вид:
хi – осредняемый признак; w – значения сводного, объемного показателя, выступающего как признак-вес.
Средняя
гармоническая взвешенная величина
рассчитывается в том случае, если
имеющиеся данные предоставляют
сведения об объеме определяющего показателя,
рассчитываемого как
Такая форма средней применяется, когда необходимо рассчитать:
- общую среднюю из групповых средних величин;
- среднюю относительную величину, если не известна величина, находящаяся в знаменателе осредняемого признака.
Средняя геометрическая невзвешенная величина
Если показатель степени равен 0, то получаем следующую форму средней:
xi – индивидуальные значения признака у отдельных единиц совокупности; Пxi – произведение индивидуальных значений осредняемого признака; n – число элементов совокупности.
Такая средняя величина называется средней геометрической простой (невзвешенной).
Данная форма средней отличается от остальных форм, описанных выше, в той же мере, как арифметическая прогрессия от геометрической. То есть, в случае расчета средних арифметической и гармонической элементы совокупности представляли собой либо:
а) абсолютные величины, которые могли быть просуммированы между собой;
б) относительные величины, которые путем дополнительных расчетов переводились в абсолютные, и затем суммировались.
В данной форме средней элементами исследуемой совокупности являются:
Все формы средней, как указывалось выше, образованы от единой степенной средней и отличаются друг от друга лишь показателями степени. Правильность расчета средней величины можно проверить с помощью правила мажорантности:
То
есть, правило мажорантности
Полученные в ходе наблюдения данные об отдельных единицах совокупности подвергаются первичной обработке – сводке и группировке, после чего собранная информация представляется в форме статистических показателей. Такие показатели характеризуют размеры уже не каждой единицы, а явления в целом, то есть носят обобщающий характер. В зависимости от исследуемого признака обобщающие показатели выражаются через абсолютные, относительные и средние величины
Будучи построенными в соответствии с требованиями конкретизации признака для статистического применения, показатели социально-экономической статистики формируют модель реально функционирующей экономики – как в целом, так и отдельных её частей в соответствующих отраслевых и предметных областях.