Неперамтрмчесие методы в статистике

Автор: Пользователь скрыл имя, 17 Марта 2012 в 13:14, реферат

Краткое описание

Непараметрические методы математической статистики - методы непосредственной оценки и проверки гипотез о теоретическом распределении вероятностей и тех или иных его общих свойствах (симметрии, независимости и т. п.) по результатам наблюдений.

Файлы: 1 файл

Непараметрические методы СТАТИСТИКА.doc

— 1.24 Мб (Скачать)

Между базисными и цепными абсолютными изменениями существует взаимосвязь: сумма цепных абсолютных изменений равна последнему базисному изменению, то есть .

В нашем примере про число жителей России подтверждается правильность расчета абсолютных изменений: = - 2,3 рассчитана в итоговой строке 4-го столбца, а = - 2,3 – в предпоследней строке 3-го столбца расчетной таблицы. Базисное относительное изменение (базисный темп роста или базисный индекс динамики) представляет собой соотношение конкретного и первого уровней ряда, определяясь по формуле

Цепное относительное изменение (цепной темп роста или цепной индекс динамики) представляет собой соотношение конкретного и предыдущего уровней ряда, определяясь по формуле .

Относительное изменение показывает во сколько раз уровень данного периода больше уровня какого-либо предшествующего периода (при i>1) или какую его часть составляет (при i<1). Относительное изменение может выражаться в виде коэффициентов, то есть простого кратного отношения  (если база сравнения принимается за единицу), и в процентах (если база сравнения принимается за 100 единиц) путем домножения относительного изменения на 100%.

В нашем примере про число жителей России в столбце 5 расчетной таблицы найдены базисные относительные изменения, а в столбце 6 – цепные относительные изменения. Между базисными и цепными относительными изменениями существует взаимосвязь: произведение цепных относительных изменений равно последнему базисному изменению, то есть .

В нашем примере про число жителей России подтверждается правильность расчета относительных изменений: = 0,995*0,995*0,996*0,999*0,999 = 0,984 - рассчитано по данным 6-го столбца, а = 0,984 – в предпоследней строке 5-го столбца расчетной таблицы. Темп изменения (темп прироста) уровней – относительный показатель, показывающий, на сколько процентов данный уровень больше (или меньше) другого, принимаемого за базу сравнения. Он рассчитывается путем вычитания из относительного изменения 100%, то есть по формуле: ,

или как процентное отношение абсолютного изменения к тому уровню, по сравнению с которым рассчитано абсолютное изменение (базисный уровень), то есть по формуле: .

В нашем примере про число жителей России в столбце 7 расчетной таблицы найдены базисные темпы изменения, а в столбце 8 – цепные. Все расчеты свидетельствуют о ежегодном снижении числа жителей в России за период 2004-2009 гг.


Средние показатели ряда динамики

Каждый ряд динамики можно рассматривать как некую совокупность n меняющихся во времени показателей, которые можно обобщать в виде средних величин. Такие обобщенные (средние) показатели особенно необходимы при сравнении изменений того или иного показателя в разные периоды, в разных странах и т.д. Обобщенной характеристикой ряда динамики может служить прежде всего средний уровень ряда. Способ расчета среднего уровня зависит от того, моментный ряд или интервальный (периодный). В случае интервального ряда его средний уровень определяется по формуле простой средней арифметической величины из уровней ряда, т.е. =
Если имеется моментный ряд, содержащий n уровней (y1, y2, …, yn) с равными промежутками между датами (моментами времени), то такой ряд легко преобразовать в ряд средних величин. При этом показатель (уровень) на начало каждого периода одновременно является показателем на конец предыдущего периода. Тогда средняя величина показателя для каждого периода (промежутка между датами) может быть рассчитана как полусумма значений у на начало и конец периода, т.е. как . Количество таких средних будет . Как указывалось  ранее, для рядов средних величин средний уровень рассчитывается по средней арифметической. Следовательно, можно записать
.
После преобразования числителя получаем
,

где Y1 и Yn — первый и последний уровни ряда;   Yi  —  промежуточные уровни.

Эта средняя  известна в статистике как средняя хронологическая для моментных рядов. Такое название она получила от слова «cronos» (время, лат.), так как рассчитывается из меняющихся во времени показателей. В случае неравных промежутков между датами среднюю хронологическую для моментного ряда можно рассчитать как среднюю арифметическую из средних значений уровней на каждую пару моментов, взвешенных по величине расстояний (отрезков времени) между датами, т.е.
.
В данном случае предполагается, что в промежутках между датами уровни принмали разные значения, и мы из двух известных (yi и yi+1) определяем средние, из которых затем уже рассчитываем общую среднюю для всего анализируемого периода.
Если же предполагается, что каждое значение yi  остается неизменным до следующего (i+1)-го момента, т.е. известна  точная дата изменения уровней, то расчет можно осуществлять по формуле средней арифметической взвешенной:
,

где – время, в течение которого уровень оставался неизменным.   Кроме среднего уровня в рядах динамики рассчитываются и другие средние показатели – среднее изменение уровней ряда (базисным и цепным способами), средний темп изменения. Базисное среднее абсолютное изменение представляет собой частное от деления последнего базисного абсолютного изменения на количество изменений. То есть Б =

Цепное среднее абсолютное изменение уровней ряда представляет собой частное от деления суммы всех цепных абсолютных изменений на количество изменений, то есть  Ц =

По знаку средних абсолютных изменений также судят о характере изменения явления в среднем: рост, спад или стабильность. Из правила контроля базисных и цепных абсолютных изменений следует, что базисное и цепное среднее изменение должны быть равными. Наряду со средними абсолютным изменением рассчитывается и среднее относительное тоже базисным и цепным способами. Базисное среднее относительное изменение определяется по формуле Б==  Цепное среднее относительное изменение определяется по формуле Ц=Естественно, базисное и цепное среднее относительное изменения должны быть одинаковыми и сравнением их с критериальным значением 1 делается вывод о характере изменения явления в среднем: рост, спад или стабильность. Вычитанием 1 из базисного или цепного среднего относительного изменения образуется соответствующий среднийтемп изменения, по знаку которого также можно судить о характере изменения изучаемого явления, отраженного данным рядом динамики.

Понятие об индексах. Классификация индексов

Индекс — это обобщающий относительный показатель, характеризующий изменение уровня общественного явления во времени, по сравнению с программой развития, планом, прогнозом или его соотношение в пространстве.

Наиболее распространена сравнительная характеристика во времени. В этом случае индексы выступают как относительные величины динамики.
Индексный метод является также важнейшим аналитическим средством выявления связей между явлениями. При этом применяются уже не отдельные индексы, а их системы.
В статистической практике индексы применяются при анализе развития всех отраслей экономики, на всех этапах экономической работы. В условиях рыночной экономики особенно возросла роль индексов цен, доходов населения, фондового рынка и территориальных индексов.

Статистика осуществляет классификацию индексов по следующим признакам:

1. В зависимости от объекта исследования:

                    индексы объемных (количественных) показателей (индексы физического объема: товарооборота, продукции, потребления)

                    индексы качественных показателей (индексы цен, себестоимости, заработной плата)

К индексам объемных показателей относятся индексы физического объема: товарооборота, продукции, потребления материальных благ и услуг; а также других показателей, имеющих количественный характер: численности работников, посевных площадей и т.п. К индексам качественных показателей относятся индексы: цен, себестоимости продукции, заработной платы, производительности труда, урожайности и т.п.;

2. По степени охвата элементов совокупности:

                    индивидуальные индексы (дают сравнительную характеристику отдельных элементов явления)

                    общие индексы (характеризуют изменение совокупности элементов или всего явления в целом)

3. В зависимости от методологии исчисления общие индексы подразделяются на:

                    агрегатные (агрегатные индексы являются основной формой индексов и строятся как агрегаты путем взвешивания индексируемого показателя с помощью неизменной величины другого, взаимосвязанного с ним показателя).

                    средние (являются производными от агрегатных)

4. В зависимости от базы сравнения различают:

                    базисные (если при исчислении индексов за несколько периодов времени база сравнения остается постоянной)

                    цепные (если база сравнения постоянно меняется)

Индексный метод

Элиминирование, то есть расчет влияния отдельных факторов на обобщающий показатель, может осуществляться такжеиндексным методом. Этот метод применяется для расчленения экономических показателей. Индексы являются разновидностью относительных величин. Индексы применяются в анализе хозяйственной деятельности с целью характеристики экономических явлений, состоящих из элементов, которые не следует суммировать.

Технически любой индекс представляет собой показатель, определяемый как соотношение двух каких-либо величин. Последние являются, по существу, определенными состояниями известного признака. С помощью индексов осуществляются сравнения фактических показателей с базисными, то есть, как правило, с плановыми и с показателями предшествующих периодов.

Различают два основных вида индексов:

                    простые (частные, индивидуальные);

                    аналитические (общие, агрегатные).

В первом случае исследуемый признак принимается без учета связи этого признака с остальными признаками исследуемых экономических явлений. Такие индексы могут быть представлены следующей формулой:

 и  — соответственно сравниваемые состояния какого-либо признака

Во втором случае изучаемый признак используется не изолированно, а в его взаимосвязи с другими признаками.

Поэтому любой аналитический индекс состоит из двух элементов:

                    индексируемый признак , то есть тот признак, изменение которого подвергается изучению;

                    весовой признак .

С помощью весовых признаков исследуются изменения экономических явлений, составляющие элементы которых являются несоизмеримыми. Следует иметь в виду, что простые и аналитические индексы взаимно дополняют друг друга.

Аналитические индексы могут быть представлены следующим образом:

 или 

где  и  — весовые признаки

Использование индексов в экономическом анализе преследует следующие цели:

                    с их помощью дается оценка относительного изменения какого-либо экономического явления или показателя;

                    применение индексов дает возможность определить влияние отдельных факторов на изменение обобщающего (результативного) показателя (признака).

                    дается оценка влияния изменения структуры какого-либо экономического явления на величину динамики этого явления.

Рассмотрим сущность индексного метода на конкретном примере. Если анализируемая организация выпускает разнородную продукцию, то рассчитывается общий индекс объема продукции.

Информация об объеме и стоимости выпускаемой продукции.

Виды продукции

Количество (штук)

Цена за 1 штуку (рублей)

Стоимость продукции (рублей)

А

10

13

5

5

50

65

65

Б

15

12

3

2

45

36

24

В

20

22

1

2

20

22

44

Итого:

-

-

-

-

115

123

133

В рассматриваемом примере мы исчислим аналитические индексы, где в качестве индексируемого признака беретсяобъем выпускаемой продукции, а в качестве весового признака — цена за единицу продукции. На основе данных, приведенных в таблице, рассчитаем общий индекс объема продукции:

На полученный нами результат оказали влияние два фактора:

                    изменение количества продукции;

                    изменение цен на продукцию.

Следует отдельно определить:

                    индекс изменения количества (объема) продукции при условии ее оценки в одинаковых ценах;

                    индекс изменения цен на продукцию при условии ее одинакового объема.

Вначале найдем индекс изменения количества продукции:

Затем определим индекс изменения цен на продукцию:

В рассматриваемом примере индекс изменения количества показывает увеличение объема продукции на  или на 8 рублей, то есть (123 — 115). Индекс изменения цен свидетельствует о повышении цен на продукцию на , что составляет 10 рублей, то есть (133 — 123).

Если сложить влияние индексов получим общий индекс объема продукции — 18 рублей.

С помощью индексов можно сравнивать данные за ряд лет, например, путем расчетов темпов роста продукции в сопоставимых ценах.

В условиях анализа динамики показателей следует различать понятия цепного и базисного индексов. Базисным называется индекс, рассчитанный по отношению к базисному периоду. Цепным называется индекс, рассчитанный по отношению к предыдущему периоду.

Индивидуальные индексы

Способы построения индексов зависят от содержания изучаемого явления, методологии расчета исходных статистических показателей и целей исследования. В каждом индексе выделяют 3 элемента:

В каждом индексе выделяют 3 элемента:

                    индексируемый показатель — это показатель, соотношение уровней которого характеризует индекс

                    сравниваемый уровень — это тот уровень, который сравнивают с другим.

                    базисный уровень — это тот уровень, с которым производится сравнение.

Для расчета индекса необходимо найти отношение сравниваемого уровня к базисному и выразить его в виде коэффициента, если база сравнения приравнивается к единице, или в процентах, если база сравнения принимается за 100%. Обычно расчеты индексов производятся в форме коэффициентов с точностью до третьего знака после запятой, т. е. до 0,001, в форме процентов — до десятых долей процента, т.е. до 0,1%.

Для удобства построения индексов используется специальная символика:

                    i — символ индексируемого показателя — индекс, характеризующий изменение уровня элемента явления.

Информация о работе Неперамтрмчесие методы в статистике