Лекции по "Основам биотехнологии"

Автор: Пользователь скрыл имя, 01 Марта 2013 в 19:43, курс лекций

Краткое описание

1-лекция ОСНОВНЫЕ НАПРАВЛЕНИЯ БИОТЕХНОЛОГИИ
2-лекция ОБЪЕКТЫ БИОТЕХНОЛОГИИ И ИХ БИОТЕХНОЛОГИЧЕСКИЕ ФУНКЦИИ
3-лекция ОСНОВНЫЕ ПРИНЦИПЫ ПРОМЫШЛЕННОГО ОСУЩЕСТВЛЕНИЯ БИОТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
4-лекция ПРОИЗВОДСТВО БИОТЕХНОЛОГИЧЕСКИХ ПРОДУКТОВ
5-лекция БИОТЕХНОЛОГИЯ И ЭКОЛОГИЧЕСКИЕ ПРОБЛЕМЫ

Оглавление

Основные направления биотехнологии ...................................................3
Объекты биотехнологии и их биотехнологические функции ...................................................................24
Основные принципы промышленного осуществления биотехнологических процессов ......................................42
Производство биотехнологических продуктов ........................................59
Биотехнология и экологические проблемы ..............................................96
Литература ...................................................................................................105

Файлы: 1 файл

I-раздел.doc

— 729.50 Кб (Скачать)

Третий вид технологии состоит в прямом сбраживании  целлюлозными бактериями гексоз и пентоз, образующихся при гидролизе целлюлозы  и гемицеллюлоз. Преимущества этой технологии, разработанной в лабораториях Массачусетского технологического института, заключаются в следующем: помимо одновременной конверсии целлюлоз и пентоз в этанол происходит комбинация целлюлозного и спиртового брожения, а, кроме того, необходимая предварительная обработка субстратов сводится к минимуму.

При микробной деградации и конверсии целлюлоз и гемицеллюлоз можно получать этиловый спирт и  сырье для химической промышленности (фурфурол, фенолы, крезолы). 200 000 т надлежащим образом переработанной соломы дают 50 000 т этанола и 20 000 т фурфурола. По оценкам некоторых специалистов, при микробной переработке целлюлозы можно получить до 30% нефтехимикатов. Методы генной инженерии помогут создать штаммы, которые будут лучше адаптированы к этим типам конверсии и дадут больший выход. Это позволит разработать реальную стратегию замещения, которая станет эффективной после 2000 г. (к тому времени химия углерода придет на смену нефтехимии при производстве новых биополимеров, биорастворителей и биодетергентов). Перенос генов целлюлаз и гемицеллюлаз из Clostridium thermocellum в другие виды Clostridium позволит превращать целлюлозы и гемицеллюлозы в этиловый спирт, ацетон, бутанол, уксусную и молочную кислоты.

Термофилия определенных штаммов Clostridium (при оптимальной температуре роста 65—75° С) создает известные преимущества, так как стоимость перегонки этилового спирта и других растворителей уменьшится, а это сделает производственный процесс более экономичным.

Исследователи из Университета Нового Южного Уэльса (Австралия) и Рутгерского университета (США) обнаружили, что бактерия Zymomonas mobilis, выделяемая из пальмового вина и мексиканского алкогольного напитка пульке, сбраживает сахара вдвое быстрее, чем дрожжи. Этот вид также подвергается геномной модификации, которая позволит разлагать целлюлозу с одновременным сбраживанием сахаров, получающихся в ходе деградации.

В условиях строгого анаэробиоза  можно осуществлять биометаногенез ароматических соединений. Этот процесс, надо полагать, широко распространен  в природе, особенно в отходах и сточных водах, а также при конверсии некоторых биоцидов. По наблюдениям Ферри и Вольфа, в этом процессе участвуют несколько видов микробов, ответственных за различные стадии деградации ароматических колец до ацетата, который является одним из субстратов для метанобактерий (иными словами, его дегидрирование дает электроны, требующиеся для восстановления двуокиси углерода в метан). Среди бактерий видов превалируют, судя по всему, Methanobacterium formicicum и Methanospirillum hungati. Ферри и Вольфу удалось их вывести в чистые культуры.

Бензольное кольцо сначала  восстанавливается и затем разрезается  на алифатические кислоты под  действием грамотрицательных микроорганизмов. Последние превращаются в субстраты, используемые метанобактериями. Образующиеся электроны, вероятно, способствуют образованию водорода, который восстанавливает СО2 в СН4.

Разложение бензольного  кольца в метан в процессе анаэробиоза  не является правилом. Например, в рубце  жвачных животных бензоат и ароматические  кислоты, получающиеся за счет деградации целлюлозы, не приводят к образованию метана; их можно обнаружить в моче и виде гиппуратов и других сходных соединений. В природных условиях ароматические соединения получаются при медленном разложении таннинов и лигнина главным образом благодаря внеклеточным микробным ферментам.

Так как лигнины и  таннины составляют значительную часть  почвенного органического материала, метаногенез этих полимеров—важный процесс в углеродном цикле биосферы.

Одним их отходов сельского  хозяйства является солома. Эти отходы трудно использовать, так как скорость разложения соломы невелика. Лучшая утилизация - инокулирование её ассоциацией целлюлолитических грибов, азотфиксирующих и полисахаридообразующих бактерий. В таком виде солому можно запахивать в землю как органическое удобрение, а можно через определенное время использовать как высокобелковый витаминизированный корм.

 

 

II. ОБЪЕКТЫ БИОТЕХНОЛОГИИ И ИХ БИОТЕХНОЛО-ГИЧЕСКИЕ ФУНКЦИИ

 

БАКТЕРИИ И  ЦИАНОБАКТЕРИИ

 

 

Биотехнологические объекты  находятся на разных ступенях организации:

а) субклеточные структуры (вирусы, плазмиды, ДНК митохондрий  и хлоропластов, ядерная ДНК);

б) бактерии и  цианобактерии;

в) грибы;

г) водоросли;

д) простейшие;

е) культуры клеток растений и животных;

ж) растения –  низшие (анабена-азолла) и высшие – рясковые.

 

Субклеточные структуры  будут подробно изучаться в разделе  «Основы генетической инженерии», культуры растительных и животных клеток –  в соответствующих разделах.

Микроорганизмов, синтезирующих  продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве: - пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.; - микробных инсектицидов (Bacillus thuringiensis); - белка (Methylomonas); - витаминов (Clostridium - рибофлавин); - растворителей и органических кислот; - биогаза и фотоводорода.

Полезные бактерии относятся  к эубактериям. Уксуснокислые бактерии, представленные родами Gluconobacter и Acetobacter, - это грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду. Род Bacillus относится к грамположительным бактериям, которые способны образовывать эндоспоры и имеют перитрихиальное жгутикование. B.subtilis - строгий аэроб, а B.thuringiensis может жить и в анаэробных условиях. Анаэробные, образующие споры бактерии представлены родом Clostridium. C.acetobutylicum сбраживает сахара в ацетон, этанол, изопропанол и n-бутанол (ацетобутаноловое брожение), другие виды могут также сбраживать крахмал, пектин и различные азотсодержащие соединения.

К молочнокислым бактериям  относятся представители родов Lactobacillus, Leuconostoc и Streptococcus, которые не образуют спор, грамположительны и нечувствительны к кислороду. Гетероферментативные молочнокислые бактерии рода Leuconostoc превращают углеводы в молочную кислоту, этанол и углекислый газ. Гомоферментативные молочнокислые бактерии рода Streptococcus продуцируют только молочную кислоту, а брожение, осуществляемое представителями рода Lactobacillus, позволяет получить наряду с молочной кислотой ряд разнообразных продуктов.

К бактериям рода Corynebacterium, неподвижные грамположительные  клетки которых не образуют эндоспор, относятся патогенные (C.diphtheriae, C.tuberculosis) и непатогенные почвенные виды, имеющие промышленное значение. С.glutamicum служит источником лизина и улучшающих вкус нуклеотидов. Коринебактерии хотя и считаются факультативными анаэробами, лучше растут аэробно. Бактерии используются для микробного выщелачивания руд и утилизации горнорудных отходов.

Широко используется такое свойство некоторых бактерий, как диазотрофность, то есть способность к фиксации атмосферного азота.

Выделяют 2 большие группы диазотрофов:

  • симбионты: без корневых клубеньков (азотобактер - лишайники, азоспириллум - лишайники, анабена – лишайники, азолла), с корневым клубеньками (бобовые – ризобии, ольха, лох, облепиха – актиномицеты);
  • свободноживущие: гетеротрофы (азотобактер, клостридиум, метилобактер), автотрофы (хлоробиум, родоспириллум и амебобактер).

 

Микробные клетки используют для трансформации веществ.

Бактерии также широко используются в генноинженерных  манипуляциях при создании геномных клонотек, введении генов в растительные клетки (агробактерии).

Производственные штаммы микроорганизмов должны соответствовать  определенным требованиям: способность  к росту на дешевых питательных  средах, высокая скорость роста и  образования целевого продукта, минимальное образование побочных продуктов, стабильность продуцента в отношении производственных свойств, безвредность продуцента и целевого продукта для человека и окружающей среды. В связи с этим все микроорганизмы, используемые в промышленности проходят длительные испытания на безвредность для людей, животных и окружающей среды. Важным свойством продуцента является устойчивость к инфекции, что важно для поддержания стерильности, и фагоустойчивость.

Все цианобактерии обладают способностью к азотфиксации, что делает их весьма перспективными продуцентами белка. Анабена (Anabaena) - нитчатая сине-зеленая водоросль. Нити из более или менее округлых клеток, содержат гетероцисты и иногда крупные споры, по всей длине нить одинаковой толщины. В цитоплазме клеток откладывается близкий к гликогену запасной продукт - анабенин. Такие представители цианобактерий, как носток, спирулина, триходесмиум съедобны и непосредственно употребляются в пищу. Носток образует на бесплодных землях корочки, которые разбухают при увлажнении. В Японии местное население использует в пищу пласты ностока, образующиеся на склонах вулкана и называет их ячменным хлебом Тенгу (Тенгу - добрый горный дух).

Свое шествие спирулина (Spirulina platensis) начала из Африки — население  района озера Чад давно употребляет ее в пищу, называя этот продукт «дихе». Другое место, откуда начала распространяться спирулина, но иного вида (Spirulina maxima) — воды озера Тескоко в Мексике. Еще ацтеки собирали с поверхности озер и употребляли в пищу слизистую массу сине-зеленой водоросли спирулины. Впервые галеты "текуитлатл" упомянуты испанцем Кастильо в 1521 г. Эти галеты продавались на базаре в Мехико и состояли из высушенных слоев S.maxima. В 1964 году бельгийский ботаник Ж.Леонар обратил внимание на галеты сине-зеленого цвета, которые местное население изготовляло из водорослей, растущих в щелочных прудах вокруг озера Чад. Эти галеты представляли собой высушенную массу спирулины. Анализ образцов Spirulina показал, что в ней содержится 65% белков (больше, чем в соевых бобах), 19% углеводов, 6% пигментов, 4% липидов, 3% волокон и 3% золы. Для белков этой водоросли характерно сбалансированное содержание аминокислот. Клеточная стенка этой водоросли хорошо переваривается. Как озеро Тескоко, так и водоемы района озера Чад имеют в воде очень высокое содержание щелочей. Характерно, что в таких озерах спирулина полностью доминирует и растет почти как монокультура — составляет в отдельных озерах до 99 % общего количества водорослей. Растет спирулина в щелочной среде при рН вплоть до 11. Ее собирают также из озер около г. Мехико, получая до 2 т сухого веса биомассы водоросли в сутки, и эта продукция рассылается в США, Японию, Канаду. В других странах спирулину культивируют обычно в искусственных водоемах или специальных емкостях. Спирулину можно культивировать в открытых прудах или, как в Италии, в замкнутой системе из полиэтиленовых труб. Урожайность очень высокая: получают до 20 г сухой массы водоросли с 1 м2 в день, а расчеты на год показали, что она превысит выход пшеницы примерно в 10 раз.

Преимущества спирулины  по сравнению с другими съедобными водорослями не только в простоте культивирования, но и в несложности  сбора биомассы, высушивания ее, например, под солнцем. В ряде стран  выращивают спирулину вида Spirulina platensis. Недавно было показано, что в клетках спирулины, помимо ценного белка, углеводов, липидов, витаминов, в значительных количествах запасается, например, такое ценное вещество, как поли-b-оксибутират. Отечественная фармацевтическая промышленность выпускает препарат «Сплат» на основе цианобактерии Spirulina platensis. Он содержит комплекс витаминов и микроэлементов и применяется как общеукрепляющее и иммуностимулирующе средство.

 

 

ГРИБЫ

 

Биотехнологические функции  грибов разнообразны. Их используют для получения таких продуктов, как:

  • антибиотики (пенициллы, стрептомицеты, цефалоспорины);
  • гиббереллины и цитокинины (физариум и ботритис);
  • каротиноиды (н-р, астаксантин, придающий мякоти лососевых рыб красно-оранжевый оттенок вырабатывают Rhaffia rhodozima, которых добавляют в корм на рыбозаводах);
  • белок (Candida, Saccharomyces lipolitica);
  • сыры типа рокфор и камамбер (пенициллы);
  • соевый соус (Aspergillus oryzae).

 

К грибам относятся актиномицеты, дрожжи и плесени. Истинные актиномицеты - строгие аэробы, они грамположительны и не образуют спор. Наиболее представительный в этой группе - род Streptomyces, отдельные виды которого продуцируют широко применяемые антибиотики. При росте на твердых средах актиномицеты образуют очень тонкий мицелий с воздушными гифами, которые дифференцируются в цепочки конидиоспор. Каждая конидиоспора способна образовать микроколонию.

Антибиотики продуцирует  и другой вид актиномицетов, Micromonospora, колонии которого лишены воздушных  гиф и образуют конидиоспоры непосредственно  на мицелии.

Из 500 известных видов дрожжей первым люди научились использовать Saccharomyces cerevisiae, этот вид наиболее интенсивно культивируется. К дрожжам, сбраживающим лактозу, относится Kluyveromyces fragilis, который используют для получения спирта из сыворотки. Saccharomycopsis lipolytica деградирует углеводороды и употребляется для получения белковой массы.

Все три вида принадлежат  к классу аскомицетов. Другие полезные виды относятся к классу дейтеромицетов (несовершенных грибов), так как  они размножаются не половым путем, а почкованием. Candida utilis растет в сульфитных сточных водах (отходы бумажной промышленности). Trichosporon cutaneum, окисляющий многочисленные органические соединения, включая некоторые токсичные (например, фенол), играет важную роль в системах аэробной переработки стоков. Phaffia rhodozyma синтезирует астаксантин - каротиноид, который придает мякоти форели и лосося, выращиваемых на фермах, характерный оранжевый или розоватый цвет. Промышленные дрожжи обычно не размножаются половым путем, не образуют спор и полиплоидны. Последним объясняется их сила и способность адаптироваться к изменениям среды культивирования (в норме ядро клетки S.cerevisiae содержит 17 или 34 хромосомы, т.е. клетки либо гаплоидны, либо диплоидны).

Плесени вызывают многочисленные превращения в твердых средах, которые происходят пред брожением. Их наличием объясняется гидролиз рисового крахмала при производстве сакэ и гидролиз соевых бобов, риса и солода при получении пищи, употребляемой в азиатских странах. Пищевые продукты на основе сброженных плесневыми грибами Rhizopus oligosporus соевых бобов или пшеницы содержат в 5 - 7 раз больше таких витаминов, как рибофлавин, никотиновая кислота) и отличаются повышенным в несколько раз содержанием белка. Плесени также продуцируют ферменты, используемые в промышленности (амилазы, пектиназы и т.д.), органические кислоты и антибиотики. Их применяют и в производстве сыров, например, камамбера и рокфора.

Информация о работе Лекции по "Основам биотехнологии"