Контрольная работа по "Биохимия"

Автор: Пользователь скрыл имя, 29 Февраля 2012 в 22:13, контрольная работа

Краткое описание

1. Изоэлектрическая точка. Почему она различна для разных белков?
Желчные кислоты. Какую роль они играют в пищеварении липидов и всасывании продуктов пищеварения. Какие органы играют роль жировых депо? Какие химические превращения могут в них происходить?

Файлы: 1 файл

В современных условиях бурно развивающегося научно.docx

— 17.82 Кб (Скачать)
  1. Изоэлектрическая точка. Почему она различна для разных белков?

 

Изоэлектрическая  точка (pI) — кислотность среды (pH), при которой определённая молекула или поверхность не несёт электрического заряда. Амфотерные молекулы (цвиттер-ионы) содержат как положительные, так и отрицательные заряды, наличием которых определяется pH раствора. Заряд различных функциональных групп таких молекул может меняться в результате связывания или, наоборот, потери протонов H+. Величина изоэлектрической точки такой амфотерной молекулы определяется величинами констант диссоциации кислотной и осно́вной фракций:

При изоэлектрической точке молекула белка электронейтральна и не передвигается в электрическом поле. В таком состоянии молекулы белка легко выпадают в осадок, чем и пользуются для разделения белковых веществ при их  совместном  присутствии.Большинство белков имеют изоэлектри-чеекую точку при рН от 4,0 до 8,0. Изоэлектрическая точка фермента желудочного сока пепсина находится в резко кислой среде при рН 1,0, а химотрипсина при рН 8,1. Белковые вещества в водной среде проявляют свойства амфо-терности, т. е. они ведут себя и как кислоты, имея карбоксильные группы, и как основания благодаря наличию аминных групп. Однако если раствор белка подкислять, то его кислотная диссоциация будет подавляться, белок заряжается положительно, образуется катион белка. Если добавлять щелочь, то щелочная диссоциация белка будет подавляться, белок заряжается отрицательно, появится анион белка. Следовательно, поведение белков в электрическом поле будет зависеть от аминокислотного состава их, что и используют для разделения белков на фракции при электрофорезе.

Белки, имеющие  суммарный положительный или  отрицательный заряд, лучше растворимы, чем белки, находящиеся в изоэлектрической точке. Суммарный заряд увеличивает количество диполей воды, способных связываться с белковой молекулой, и препятствует контакту одноимённо заряженных молекул, в результате растворимость белков увеличивается. Заряженные белки могут двигаться в электрическом поле: анионные белки, имеющие отрицательный заряд, будут двигаться к положительно заряженному аноду (+), а катионные белки - к отрицательно заряженному катоду (- ). Белки, находящиеся в изоэлектрическом состоянии, не перемещаются в электрическом поле.

Белковые вещества в водной среде проявляют свойства амфотерности, т.е. они ведут себя и как кислоты, имея карбоксильные группы, и как основания, благодаря наличию аминных групп. Но если раствор белка подкислять, то его кислотная диссоциация будет подавляться, и белок будет заряжаться положительно - образуется катион белка. Если добавлять щёлочь, то щёлочная диссоциация белка будет подавляться, белок будет заряжаться отрицательно, появится анион белка.

Каждый из белков может быть охарактеризован изоэлектрической точкой - значением рН, при котором суммарный заряд белковой молекулы равен нулю, и, следовательно, белок не способен перемещаться под действием электрического поля. При изоэлектрическом фокусировании белки подвергаются электрофорезу в геле, в котором с помощью специальных буферов создается градиент рН. Под действием электрического поля каждый белок перемещается в ту зону градиента, которая соответствует его изоэлектрической точке и остается в ней.

Изоэлектрическая  точка большинства белков организма  находится в слабокислой среде. Это означает, что у таких белков количество кислотных  (СООН) групп больше количества основных групп (NH3). рН плазмы крови около 7,36 - это выше ИЭТ большинства белков, поэтому в плазме крови белки имеют отрицательный заряд.

При диссоциации  алкалоидов их ионы приобретают положительный заряд. Белки, имеющие отрицательный заряд при рН выше изоэлектрической точки, с катионами алкалоидов образуют соединения или комплексы. В живом организме имеются необходимые условия для взаимодействия белковых веществ с алкалоидами.

Значение изоэлектрической точки  зависит от аминокислотного состава  и специфично для каждого белка, например, для казеина рНИЭТ = 4,7, для яичного альбумина – 4,8, яичного глобулина – 6,6, желатина – 4,9, зеина (кукурузного белка) – 6,2. Чем дальше будет отстоять значение рН среды от рНИЭТ, тем большим суммарным зарядом будут обладать молекулы белка и с большей скоростью двигаться в электрическом поле.

Это свойство положено в основу электрофоретического метода, используемого для идентификации  и фракционирования белков, а также при исследовании физико-химических свойств белков.

Изоэлектрическая точка белковых веществ зависит от их природы. Так, изоэлектрической точке сывороточного  альбумина соответствует рН = 4,8, р-глобулина - 5,2, у-глобулина - 6,4, фибриногена - 5,4, пепсина- 1,0. При рН, находящемся выше изоэлектрической точки, белок имеет отрицательный заряд. По мере возрастания рН среды отрицательный заряд белков увеличивается. При рН ниже изоэлектрической точки белки имеют положительный заряд.

Биохимия: Учеб. для вузов, Под ред. Е.С. Северина., 2003. 779 с. ISBN 5-9231-0254-4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Желчные кислоты. Какую роль они играют в пищеварении липидов и всасывании продуктов пищеварения. Какие органы играют роль жировых депо? Какие химические превращения могут в них происходить?

 

Желчные кислоты - органические кислоты, входящие в состав желчи и представляющие собой конечные продукты обмена холестерина; играют важную роль в процессах переваривания и всасывания жиров; способствуют росту и функционированию нормальной кишечной микрофлоры.

Первичные желчные  кислоты - холевая кислота и хенодезоксихолевая кислота - синтезируются в печени из холестерина, конъюгируются с  глицином или таурином и секретируются  в составе желчи. Вторичные желчные  кислоты, включая дезоксихолевую кислоту и литохолевую кислоту, образуются из первичных желчных кислот в толстой кишке под действием бактерий. Литохолевая кислота всасывается значительно хуже, чем дезоксихолевая. Другие вторичные желчные кислоты образуются в ничтожно малых количествах. К ним относятся урсодезоксихолевая кислота (стереоизомер хенодезоксихолевой кислоты) и ряд других необычных желчных кислот. При хроническом холестазе эти кислоты обнаруживаются в повышенных количествах. В норме соотношение количеств желчных кислот, конъюгированных с глицином и таурином, составляет 3:1; при холестазе часто повышены концентрации желчных кислот, конъюгированных с серной и глюкуроновой кислотами.Являются поверхностно-активными веществами.

Желчные кислоты  представляют собой твердые порошкообразные вещества с высокой температурой плавления (от 134 до 223 °С), обладающие горьким вкусом, плохо растворимые в воде, лучше - в спиртовых и щелочных растворах. По химической структуре они принадлежат к группе стероидов и являются производными холановой кислоты (С24Н40О2). Все желчные кислоты образуются только в гепатоцитах из холестерина.

В организме человека желчные кислоты выполняют различные функции, основные из них - участие во всасывании жиров из кишечника, регуляция синтеза холестерина и регуляция желчеобразования и желчевыделения.

Желчные кислоты  играют важную роль в переваривании  и всасывании липидов. В тонкой кишке  конъюгированные желчные кислоты, являясь поверхностно-активными  веществами, адсорбируются в присутствии  свободных жирных кислот и моноглицеридов на поверхности капелек жира, образуя при этом тончайшую пленку, препятствующую слиянию мельчайших капелек жира в более крупные. При этом происходит резкое снижение поверхностного натяжения на границе двух фаз - воды и жира, что приводит к образованию эмульсии с размерами частиц 300-1000 ммк и мице-лярного раствора с размерами частиц 3-30 ммк. Образование мицеллярных растворов облегчает действие панкреатической липазы, которая при воздействии на жиры расщепляет их на глицерин, легко всасывающийся кишечной стенкой, и жирные кислоты, нерастворимые в воде. Желчные кислоты, соединяясь с последними, образуют холеиновые кислоты, хорошо растворимые в воде и поэтому легко всасывающиеся кишечными ворсинками в верхних отделах тонкой кишки. Холеиновые кислоты в виде мицелл всасываются из просвета подвздошной кишки внутрь клеток, сравнительно легко проходя мембраны клеток. Электронно-микроскопические исследования показали, что в клетке связь желчных и жирных кислот распадается: желчные кислоты попадают через портальную вену в кровь и печень, а жирные кислоты, накапливаясь внутри цитоплазмы клеток в виде гроздьев мельчайших капель, являются конечными продуктами всасывания липидов.

 Липиды, поступающие с пищей, крайне гетерогенны по своему происхождению. В желудочно кишечном тракте они в значительной мере расщепляются до составляющих мономеров: высших жирных кислот, глицерола, аминоспиртов и др. Эти продукты расщепления всасываются в кишечную стенку и из них в клетках кишечного эпителия синтезируются липиды, свойственные человеку. Эти видоспецифические липиды далее поступают в лимфатическую и кровеносную системы и разносятся к различным тканям и органам

Вторая существенная роль желчных кислот - регуляция  синтеза холестерина и его  деградации. Скорость синтеза холестерина в тонкой кишке зависит от концентрации желчных кислот в просвете кишки. Основная часть холестерина в организме человека образуется путем синтеза, а незначительная часть поступает с пищей. Таким образом, влияние желчных кислот на обмен холестерина заключается в поддержании его баланса в организме. Желчные кислоты сводят к минимуму нарастание или недостаток холестерина в организме.

Физиологической функцией желчных кислот является участие  в регуляции экскреторной функции  печени. Желчные соли действуют как физиологические слабительные, усиливая перистальтику кишечника. Этим действием холатов объясняются внезапные поносы при поступлении в кишечник больших количеств концентрированной желчи, например при гипомоторной дискинезии желчных путей. При забрасывании желчи в желудок может развиваться гастрит.

Резервный (запасный) жир накапливается в жировых  депо: под кожей (подкожный жировой  слой), в брюшной полости (сальник), около почек (околопочечный жир). Степень накопления резервного жира зависит от ряда причин: характера питания, уровня энергозатрат, возраста, пола, конституционных особенностей организма, деятельности желез внутренней секреции. Так, тяжелая физическая работа, некоторые заболевания, недостаточное питание способствуют уменьшению количества запасного жира. Напротив, избыточное питание, гиподинамия, снижение функции половых желез, щитовидной железы приводят к увеличению количества резервного жира. Он также образует липопротеиновые комплексы, однако они неустойчивы, поэтому количество его быстро уменьшается при голодании. В запасном жире постоянно происходят синтез и распад; он является источником обновления внутриклеточного структурного жира.

Жировая ткань служит основным «депо» жира и имеет очень высокую способность к образованию все новых и новых жировых отложений. Запасы жира у человека составляют в среднем 10—20% массы тела. По мере

необходимости жиры извлекаются из жировой ткани.

Липиды, образовавшиеся из продуктов пищеварения, поступают, в основном, в депо, где откладываются  в запас. Они могут мобилизоваться при увеличении потребности организма в них. Часть вновь синтезированных липидов поступает в клетки различных органов, где используется преимущественно как структурный компонент протоплазмы и мембран клеток. Эти липиды, в отличие от депонированных, обладают видовой специфичностью и значительной устойчивостью.

Мобилизация липидов  из депо особенно усиливается при  охлаждении организма, длительной мышечной работе, понижении содержания углеводов. Мобилизация представляет собою  липолиз (гидролитическое расщепление) липидов и включение продуктов этого расщепления в обменные процессы в различных органах.

Мусил Я., Новакова О., Кунц К. Современная биохимия в  схемах. - М.: Мир, 1990. - 216 с.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Какова потребность организма в витаминах и от чего она зависит? В чем заключается механизм действия витаминов? Назовите важнейшие коферменты, в состав  которых входят витамины. Какие наблюдаются состояния организма в зависимости от обеспеченности витаминами?

 

Витамины — группа низкомолекулярных органических соединений относительно простого строения и разнообразной химической природы. Это сборная по химической природе группа органических веществ, объединённая по признаку абсолютной необходимости их для гетеротрофного организма в качестве составной части пищи. Витамины содержатся в пище в очень малых количествах, и поэтому относятся к микронутриентам.

Витамины участвуют во множестве биохимических реакций, выполняя каталитическую функцию в  составе активных центров большого количества разнообразных ферментов либо выступая информационными регуляторными посредниками, выполняя сигнальные функции экзогенных прогормонов и гормонов.

Витамины делятся на:

1) водорастворимые ( аскорбиновая кислота (витамин C), витамин P (биофлавоноиды), тиамин (витамин B1)).

2) жирорастворимые (витамин A, витамин D (кальциферолы), витамин E (токоферолы), витамин K);

3) витаминоподобные вещества (холин, пангамовая кислота (витамин B15), ороговая кислота, липоевая кислота). Эти вещества влияют на обмен веществ, широко распространены в продуктах питания, применяются как лечебные препараты. Однако они не обладают всеми свойствами витаминов, не установлена их недостаточность у человека.

Организм человека не способен "запасать" водорастворимые витамины (группа В, витамин С, биотин) впрок на сколько-нибудь длительный срок и поэтому должен получать их регулярно, в полном наборе и количествах, обеспечивающих суточную физиологическую потребность. В большинстве стран существуют разработанные специалистами по питанию и утвержденные органами здравоохранения рекомендуемые нормы потребления витаминов. Есть они и в России. Так, потребность взрослых людей в аскорбиновой кислоте, в зависимости от пола, возраста и трудозатрат, составляет от 70 до 100 мг, в витамине В1 - от 1,5 до 2,5мг, в витамине В2 - от 1,3-2,4 мг и В6 - от 1,2 до 2,0 мг, РР - 15-20 мг, фолиевой кислоте - 0,15- 0,2 мг, В12 - 0,003г-0,004мг, А - 1мг (3333 МЕ), Е - 8 -10-12 мг, D - 400 МЕ, биотина - 30-100 мкг в сутки. Прием жирорастворимых витаминов А и D в дозах, значительно превышающих физиологическую потребность, может привести к тяжелым побочным эффектам. Это относится к крайне высоким дозам витаминов, редко используемым даже в лечебной практике. Что касается водорастворимых витаминов, то они выводятся из организма, но в ряде случаев при превышении физиологической дозы могут вызвать неспецифические реакции в виде желудочно-кишечных расстройств, крапивницы и других симптомов.

Информация о работе Контрольная работа по "Биохимия"