Автор: Пользователь скрыл имя, 14 Октября 2011 в 11:35, курсовая работа
Цель теоретической части курсовой работы – исследование статических методов изучения уровня жизни населения.
В соответствии с основной целью задачами работы являются:
определение понятия уровня жизни;
изучение существующих подходов в оценке качества жизни;
изучение системы показателей, характеризующих уровень жизни.
ВВЕДЕНИЕ 3
1 ИЗУЧЕНИЕ УРОВНЯ ЖИЗНИ НАСЕЛЕНИЯ 4
1.1 Уровень жизни как социально-экономическая категория 4
1.2 Показатели уровня жизни населения 5
1.3 Комплексная оценка уровня жизни 9
2 ПРАКТИЧЕСКОЕ ЗАДАНИЕ 13
Задание 1 13
Задание 2 29
Задание 3 36
Задание 4 38
ЗАКЛЮЧЕНИЕ 44
СПИСОК ЛИТЕРАТУРЫ 45
Рисунок
2 – График уравнения
Чтобы определить, какая из моделей (прямая или обратная) более точно определяет зависимость между величиной собственного капитала и привлеченными средствами проведем оценку тесноты связи.
При
любой форме зависимости
Чем ближе абсолютное значение коэффициента корреляции |г| к единице, тем связь теснее. При |г| < 0,3 связь считается слабой; 0,3 < |г| < 0,7 – связь средней тесноты; |г| > 0,7 – тесная связь.
Параметры уравнения рассчитаем в рабочей таблице.
4807/30= 160,2
= 1702/30 = 56,7
Таблица 9 – Расчет параметров уравнения
№п/п | х | у | (хi- |
( уi- |
(хi- |
(хi- |
(уi- |
(хi- |
1 | 167,1 | 28,2 | 7 | -28,50 | -200 | 49 | 812,25 | 39800 |
2 | 96,6 | 54,7 | -64 | -2,00 | 128 | 4096 | 4,00 | 16384 |
3 | 150,4 | 22,2 | -10 | -34,50 | 345 | 100 | 1190,25 | 119025 |
4 | 153,7 | 46,1 | -7 | -10,60 | 74 | 49 | 112,36 | 5506 |
5 | 128,5 | 56,4 | -32 | -0,30 | 10 | 1024 | 0,09 | 92 |
6 | 183 | 13,3 | 23 | -43,40 | -998 | 529 | 1883,56 | 996403 |
7 | 198,7 | 12,2 | 39 | -44,50 | -1736 | 1521 | 1980,25 | 3011960 |
8 | 109,6 | 20,5 | -51 | -36,20 | 1846 | 2601 | 1310,44 | 3408454 |
9 | 224,7 | 116,8 | 65 | 60,10 | 3907 | 4225 | 3612,01 | 15260742 |
10 | 287,7 | 26,4 | 128 | -30,30 | -3878 | 16384 | 918,09 | 15041987 |
11 | 88,5 | 5 | -72 | -51,70 | 3722 | 5184 | 2672,89 | 13856262 |
12 | 128,4 | 0,9 | -32 | -55,80 | 1786 | 1024 | 3113,64 | 3188367 |
13 | 181,6 | 2,4 | 21 | -54,30 | -1140 | 441 | 2948,49 | 1300284 |
14 | 244,4 | 86,4 | 84 | 29,70 | 2495 | 7056 | 882,09 | 6224027 |
15 | 116,5 | 12,3 | -44 | -44,40 | 1954 | 1936 | 1971,36 | 3816553 |
16 | 83,8 | 8 | -76 | -49 | 3724 | 5776 | 2401 | 13868176 |
17 | 121,6 | 62 | -39 | 5 | -195 | 1521 | 25 | 38025 |
18 | 120 | 10,1 | -40 | -47 | 1880 | 1600 | 2209 | 3534400 |
19 | 132,8 | 2,9 | -27 | -54 | 1458 | 729 | 2916 | 2125764 |
20 | 100,6 | 2,6 | -60 | -54 | 3240 | 3600 | 2916 | 10497600 |
21 | 266,9 | 11,5 | 107 | -45 | -4815 | 11449 | 2025 | 23184225 |
22 | 115,7 | 5 | -45 | -52 | 2340 | 2025 | 2704 | 5475600 |
23 | 138,3 | 58,5 | -22 | 2 | -44 | 484 | 4 | 1936 |
24 | 215 | 2,8 | 55 | -54 | -2970 | 3025 | 2916 | 8820900 |
25 | 110,9 | 10,3 | -49 | -46 | 2254 | 2401 | 2116 | 5080516 |
Продолжение таблицы 9
№п/п | х | у | (хi- |
( уi- |
(хi- |
(хi- |
(уi- |
(хi- |
26 | 100,6 | 313,1 | -60 | 256 | -15360 | 3600 | 65536 | 235929600 |
27 | 195 | 127,1 | 35 | 70 | 2450 | 1225 | 4900 | 6002500 |
28 | 171,4 | 297,5 | 11 | 241 | 2651 | 121 | 58081 | 7027801 |
29 | 213,7 | 161,7 | 54 | 105 | 5670 | 2916 | 11025 | 32148900 |
30 | 261,4 | 125,5 | 101 | 69 | 6969 | 10201 | 4761 | 48566961 |
∑ | 4807 | 1702 | 0 | 0 | 17567 | 96892 | 187947 | 468588750 |
r
= 17567 : √ 468588750 = 0,81
Таким образом имеется тесная связь между исследуемыми показателями.
Коэффициент эластичности рассчитывается по формуле
Э = а1
Э = 0,0008 (160,2/56,7) = 0,0023
Между величиной собственного капитала и привлеченных средств существует тесная связь. Коэффициент эластичности показывает, что при увеличении собственного капитала на 1% относительно средней величины величина привлеченных источников увеличивается в среднем на 0,0023%.
Построенную
модель можно использовать для практического
использования, но не для прогнозов, т.к.
велико влияние неучтенных факторов.
Задание
2
Имеются следующие данные о депозитах физических лиц в кредитных организациях, (таблица 10)
Таблица 10 – Депозиты физических лиц
Годы | Депозиты, млрд. руб. | |
на рублевых счетах | на валютных счетах | |
1996 | 64,9 | 39,8 |
1997 | 62,1 | 39,2 |
1998 | 68,9 | 39,9 |
1999 | 59,2 | 30,1 |
2000 | 61,6 | 31,0 |
2001 | 70,1 | 31,2 |
2002 | 70,6 | 33,6 |
2003 | 71,9 | 34,8 |
2004 | 73,0 | 39,6 |
2005 | 75,0 | 39,9 |
2006 | 78,6 | 40,1 |
2007 | 80,7 | 40,4 |
1. Проанализируйте структуру депозитов физических лиц по годам, сделайте вывод, как изменялась доля рублевых и валютных средств в депозитах.
2.
Проведите анализ динамики
а) среднего уровня ряда;
б) абсолютного прироста (цепного и базисного);
в) темпа роста и прироста (цепного и базисного);
г) абсолютного содержания 1 % прироста;
д) среднегодового абсолютного прироста (двумя способами);
е) среднегодового темпа роста и прироста (цепного и базисного).
Результаты расчетов представьте в виде таблицы и сделайте выводы.
3. Произведите выравнивание ряда динамики:
а) методом пятилетней скользящей средней;
б) методом
аналитического выравнивания (расчет
выполните для
прямолинейной зависимости).
Сделайте выводы.
4.
Постройте график ряда динамики по фактическим
данным и нанесите на него теоретическую
линию (тренд).
Таблица 11- Динамика и структура вкладов
Годы | Депозиты, млрд. руб. | Структура, вкладов | |||
на рублевых счетах | на валютных счетах | Итого | на рублевых счетах | на валютных счетах | |
1996 | 64,9 | 39,8 | 104,7 | 62,0 | 38,0 |
1997 | 62,1 | 39,2 | 101,3 | 61,3 | 38,7 |
1998 | 68,9 | 39,9 | 108,8 | 63,3 | 36,7 |
1999 | 59,2 | 30,1 | 89,3 | 66,3 | 33,7 |
2000 | 61,6 | 31,0 | 92,6 | 66,5 | 33,5 |
2001 | 70,1 | 31,2 | 101,3 | 69,2 | 30,8 |
2002 | 70,6 | 33,6 | 104,2 | 67,7 | 32,3 |
2003 | 71,9 | 34,8 | 106,7 | 67,4 | 32,6 |
2004 | 73,0 | 39,6 | 112,6 | 64,8 | 35,2 |
2005 | 75,0 | 39,9 | 114,9 | 65,3 | 34,7 |
2006 | 78,6 | 40,1 | 118,7 | 66,2 | 33,8 |
2007 | 80,7 | 40,4 | 121,1 | 66,6 | 33,4 |
∑ | 1276,2 |
Структура вкладов населения характеризуется преобладающим удельным весом рублевых вкладов. Доля рублевых вкладов увеличивается с 62% в 1996г. до 66,6% в 2007г.
2. Показатели динамического ряда рассчитываются по формулам:
Абсолютный прирост
Dyбазис
= yi – y0,
Темп роста
Темп прироста
Абсолютное значение одного процента прироста – сколько единиц измерения изучаемого показателя на 1% прироста
А%
= Dyц
/ Tпpц = 0,01* yi–-1.
Средний
абсолютный прирост
Или