Економіко – математичне моделювання

Автор: Пользователь скрыл имя, 17 Января 2012 в 16:28, курсовая работа

Краткое описание

Математичне моделювання як кількісний інструментарій дослідника по суті своїй належить не тільки математиці - воно має самостійне значення, і свою історію. Примітно, що один і той же математичний апарат зустрічається в описі різних об'єктів в різних наукових дисциплінах. Тим самим математичне моделювання є міждисциплінарною категорією. Математичні методи, що зарекомендували себе в першу чергу у фізиці і інших природничонаукових дисциплінах, згодом з розвитком самої математики знайшли успішне вживання і в гуманітарних науках. Економіко-математичне моделювання і моделювання політичної сфери виявляють собою наочний приклад плідного вживання математичної ідеї в наукових дослідженнях.

Оглавление

Вступ.
Розвиток методології економіко-математичного моделювання:
Історія економіко - математичної ідеї;
Економіко-математичні методи і моделі в працях зарубіжних дослідників;
Економіко-математичні методи і моделі в працях вітчизняних економістів.
Математичне моделювання і зовнішньополітичні дослідження:
Проблема методу в політичних дослідженнях;
Необхідність побудови математичних моделей зовнішньополітичної поведінки на єдиній методологічній основі;
Функціональні простори і проблема представлення залежності як суперпозиції елементарних;
Основні підходи використовування систем індикаторів для аналізу зовнішньополітичних процесів;
Простір індикаторів в системі міжнародних відносин: основні задачі метатеорії.
Висновок.
Список використаної літератури.

Файлы: 1 файл

Курсова робота з інформатики.doc

— 483.50 Кб (Скачать)

      Вживані математичні методи в політичних дослідженнях носять достатньо стійкий  характер. Існує стійке мнение,1 що по суті єдиним математичним методом, винайденим спеціально для моделювання міжнародної  політики, є модель шотландського  математика і метеоролога Люїса Річардсона динаміки озброєння двох країн. Ідеї Л. Річардсона одержали подальший розвиток в роботах У.Р. Каспарі, в М. Вульфсона В. Холіста Р. Абельсона, проте до теперішнього часу ранні роботи Л. Річардсона продовжують служити джерелом нових робіт по динаміці озброєнь. Моделі конфліктної взаємодії, засновані на інших ідеях, приведені, наприклад, в роботах. Інший тип моделей взаємодії держав заснований на припущенні, що політика держав визначається в основному економічними чинниками, тобто, що розвиток політичних процесів зв'язується з економічними показниками, які достатньо хороше виміряні. Статистичні методи на противагу вказаним методам теорії диференціальних рівнянь широко застосовуються при аналізі числового матеріалу. Одна з основних ідей в спробах кількісно зміряти політику полягає в задачі формалізації поведінки держав на Генеральній Асамблеї ООН, де як в дзеркалі відображаються істинні наміри держав, виражені підсумками голосування по резолюціях, що обговорювалися. Найзначніші результати у вказаному направлениии приведені в монографії професорів Масачусетського технологічного інституту X. Алкера і Б. Расета, заснованої на залученні техніки анализа1 чинника. До статистичних методів відноситься також робота З. Брамса і проект „Вимірність націй”, виконаний під керівництвом Р. Раммеля. статистично-логічні методи присутні і в інших аналітичних методах аналізу міжнародних відносин, таких як контент-зал, івент-аналіз і метод когнітивного картирування. Вживанню івент-аналізу в сучасній політології присвячена стаття С.И. Лобанова .

      В напрямі, пов'язаному з моделюванням, помітне місце займає експериментально-ігрове, засноване на імітації економічних, військових, соціальних і політичних аспектів реальності. Звідси виникають  „соціологічні ігри”, „економічні ділові ігри”, „військові ігри”. Відзначимо основні з таких ігор. Відомі моделі інформаційної взаємодії учасників міжнародного кризису - CRISISCOM, IN§, INSKIT, GASCON, створені а США в Північно-західному і Стенфордському університетах. Відзначимо також спроби проаналізувати в'єтнамський конфлікт в массачусетському технологічному інституті за допомогою „теорії метаігор”.

      Модель  професора Оклахомського університету О. Бенсона, названа „Проста дипломатична гра”, пов'язана з ідеєю наявності  в міжнародних відносинах схеми „стимул-реакція”. Асоціація з грою тут виявляється в тому, що кожна дія однієї сторони інтерпретується як хід („стимул”), а у відповідь дія іншої сторони, як „реакцію „- у відповідь хід. Висловимо ідею „Простої дипломатичної гри” в її модернізованому варіанті Дж. Кренда. Є сукупність держав, що характеризуються деякими параметрами і взаємними зв'язками. Деяка держава скоює проти деякого іншого ворожу акцію, яка розглядається як „стимул” певної інтенсивності. Цей „стимул” викликає, по-перше, у відповідь „реакцію” не тільки з боку держави, яка з'явилася об'єктом дії, але і з боку всієї решти держав, і, по-друге, - зміна параметрів, що характеризують всі держави, і їх зв'язків. На цьому цикл „гри” закінчується. Дослідник, який ввів в ЕОМ вказаний „стимул”, може продовжити „гру” в умовах, що змінилися, ввівши новий „стимул”, відповідний ворожій дії деякої іншої держави проти деякої нової „держави-мети” і одержати нову реакцію і т.д. Дослідник може також повернутися до первинної ситуації і спробувати ввести інший „стимул” як по спрямованості, так і по інтенсивності, і подивитися, що з цього вийде.

      Як  приклад приведемо конкретні  приватні методики використовування комп'ютерних  засобів у вивченні міжнародних  відносин. До ігрових імітаційних  засобів відносяться настільна гра КБК, створена М. Катаному, А. Бернсом і Р. Квондом і названа так по перших буквах їх прізвищ.

      Мета  авторів ігри - допомогти теоретикам в розумінні їх власних побудов. Автори не намагаються імітувати  якийсь реальний політичний процес, а  хочуть лише виявити внутрішню теорії і моделі, визначити і відтворити механізми, які визначають стабільність даної системи, Під стабільністю автори розуміють такий стан, при якому жодна навіть сама слабка країна не може бути поглинена іншими державами, зруйнована або розділена між ними, Загальний ігровий простір є сумою підпросторів, кожне з яких знаходиться у винятковому розпорядженні окремого гравця. Цей підпростір є системою лунок, в яких розміщуються однорідні фішки-ресурси: економіка, військовий резерв, межі. Правила ходів визначають дозволені способи переміщення фішок в лунках. Економічні ресурси можуть збільшуватися з часом за заданою стохастичною процедурою, що символізує економічний розвиток держави. Озброєні сили, розгорнені на межах, можуть вступати у війну, тобто можуть бути зняті з дошки за певною процедурою, що нагадує рішення рівнянь Ланчестера методом Монте-Карло. Війна ведеться до повного виснаження сторін. Ходи робляться по черзі по кругу. Гравець при своїй черзі може звернутися до інших з пропозицією про висновок або розірвання союзу. Союзники відводять війська, розташовані на межах один одного. Якщо при своїй черзі ходу гравець залишається без фішок, то він вибуває з гри, тобто програє. Що залишився в грі признається абсолютним переможцем, хоча гра може продовжуватися і нескінченно довго, оскільки можливе нескінченне балансування гравців, охочих лише утриматися в грі. Не володіючи практичною цінністю, ця гра проте має теоретичне значення, утілюючи в собі деякий підхід до методики моделювання системи міжнародних відносин. Складнішої і багатої ідеями є гра INS, або „Міжнародна імітація”, розроблена Г. Гетцковим із співробітниками, в основному Для навчання студентів (Північно-західний університет, США); в південно-каліфорнійському університеті створена інформаційно-аналітична і прогнозуюча людино-машинна система-ВБИС2. 

      1.2.2. Необхідність побудови  математичних моделей  зовнішньополітичної  поведінки на єдиній  методологічній основі

      Основний  недолік існуючих моделей полягає  в тому, що кожний ним слідчий в основу своїх висновків кладе власну систему індикаторів (показників), користується своєю базою даних, відмінною від іншого дослідника і, нарешті, розглядає задачу у власному просторі з своєю системою координат. Недивно, що часто висновки різних дослідників в характері поведінки політичного процесу виявляються діаметрально протилежними. Мабуть, немає ніякого інструментарію, що дозволяє погоджуватись висновки різних математичних моделей в різних математичних структурах. В той же час, ці математичні моделі можуть бути цілком коректними і далеко нетривіальними. Подібне положення справ підриває довір'я до кількісних методів дослідження політичних процесів; у не математиків складається враження про можливість „строгого доказу” будь-якого наперед заданого висновку (навіть невірного) в політичних дослідженнях. Як відомо, математична софістика (тобто мистецтво доводити помилкові положення) процвітає саме тоді, коли-небудь відсутні чіткі визначення в теорії, або суперечлива система аксіом, що використовується. Остання вимога спонукає до необхідності логічного аналізу всієї системи структур і визначень в математичних моделях системи міжнародних відносин для того, щоб усунути виникаючі суперечності. Але це і означає, що нова теорія автоматично включить як структурні одиниці деякий набір локальних моделей, може бути містить його моделлю більш високого рівня, що покривається. Таким чином, універсальна модель політичної поведінки може бути інтерпретована як банк локальних математичних моделей, що описують окремі ситуації. Така модель автоматично стає моделлю глобальної динаміки, оскільки економічні, військові, наукові, екологічні і інші аспекти міжнародних відносин, очевидно, виявляться взаємозв'язані в універсальній моделі, якщо тільки ми хочемо мати скільки-небудь представницьку систему аналізу світової динаміки. Як відомо, дотепер не утихають суперечки про те, що первинне - політика або економіка: політичні відносини визначають рівень економічної взаємодії держав або ж навпаки рівень економічного співробітництва визначає політичні пристрасті держав. Моделі світового розвитку є потужним інструментарієм для вивчення і прогнозування глобальної динаміки. Велику популярність здобули проекти, розроблені за замовленням римського клубу - міжнародної неурядової організації, створеної в 1968 р. італійським промисловцем А, Печчеї з метою вивчення глобальних проблем.

      Технократичний  підхід, домінуючий в перших докладах римському клубу (Форрестер, Медоуз і ін.) згодом стимулював розвиток і  чисто гуманітарних аспектів проблеми. Глобальне моделювання стало модним науковим напрямом, в якому опинилися задіяними дослідники самих різних спеціальностей: математики, економісти, політологи, демографи. Різноманітність підходів і проектів в дослідженні процесів світового розвитку привела до необхідності класифікації моделей і їх осмислення, визначення місця і ролі конкретних моделей в існуючому їх різноманітті. Таким чином, поставлена проблема узгодження локальних моделей повинна бути вирішена в системі багатопараметричної макромоделі світового розвитку, об'єднуючої основні національні, регіональні і глобальні моделі розвитку. Частково ця ідея реалізована у відомій системі LINK. Універсальна модель світового розвитку виявляє собою своєрідний банк моделей, заснованої на системі класифікації, кодування і програмно-орієнтованого доступу, передбаченого системою генерації нових локальних моделей.

      Ситуація  з організацією подібного банку  моделей багато в чому аналогічна з ситуацією навкруги різноманіття методів кластерного аналізу, широко вживаного для структурної класифікації потоків інформації. Не існує єдиного алгоритму кластер-аналізу, однаково добре працюючого як на слабо структурованих масивах інформації, так і на масивах, з яскраво вираженими „згустками”. Тому, для дослідження конкретного інформаційного масиву має сенс вибирати з банку алгоритмів той метод, який дасть якнайкращу (в значенні відповідного критерію) класифікацію. Такий вибір відповідного методу може бути здійснений автоматично з використанням попередньої процедури детермінації початкового масиву. Функціонал якості класифікації може бути вибраний різним чином на наявній безлічі алгоритмів кластер-аналізу.

      У відмінності від ситуації з побудовою  універсального алгоритму кластер-аналізу  створення універсальної моделі світового розвитку як своєрідного банку національних, регіональних і глобальних моделей полегшується наявністю в безлічі існуючих моделей світового розвитку часткового порядку по вкладенню: регіональні і глобальні моделі створюються в основному як синтез національних моделей. Тому нижнім (початковим) рівнем універсальної моделі буде набір національних і регіональних моделей розвитку. Верхнім же рівнем будуть як існуючі макромоделі, засновані на синтезі національних моделей, так і нові моделі, що описують взаємодію вибраних моделей нижнього рівня. При цьому основну роль гратиме взаємозв’язка (балансування) моделей нижнього рівня, з яких будується модель верхнього рівня. Загальна ідея взаємозв’язки моделей розвитку належить Л. Клейну - професору пенсільванського університету (США), яка реалізована в розробленому під його керівництвом проекті „ЛІНК”. Основною задачею при такому підході до ув'язки різних національних моделей є прогнозування матриці парних взаємостосунків між країнами (торгових потоків в економічних моделях), що в системі „ЛІНК” робиться за допомогою методу Стоуна-Морігучі. Для підвищення точності прогнозів можна також використовувати метод Бокса-Дженкінса прогнозування тимчасових рядів або - спектральні методи, які можуть бути ефективні як при довгостроковому, так і при короткостроковому прогнозуванні. Принципова відмінність побудови універсальної моделі світового розвитку як спеціально організованого банку національних моделей від побудови універсального алгоритму кластер-аналізу як банка окремих процедур класифікації полягає в наступному. Окремі алгоритми структурної класифікації даних займають відносно невеликий об'єм машинної пам'яті і не вимагають, як правило, скільки-небудь значної витрати машинного часу. Універсальна модель, що вибирає для дослідження пропонованого інформаційного масиву відповідну систему класифікації з тих, що є в банку, принципово може бути створена. Такі моделі у вигляді пакетів прикладних програм для статистичної обробки даних створені, наприклад, в ЦЕМІ РАН під керівництвом С.А. Айвазяна. Створення ж аналогічного пакета національних моделей в одній системі зіткнеться з великими технічними труднощами, викликаними необхідністю мати в машинній пам'яті великий набір програм, що реалізовують моделі національного, регіонального або світового розвитку.

      Таким чином, на перший план висувається задача організації кодування

      і класифікації окремих моделей, що входять  в банк - каталог, що виявляє собою  шукану універсальну модель. Роль універсальної  моделі в дослідженні заданого об'єкту (країни, регіону) припускає тим самим не остаточне обчислення значень фазових змінних, а вказівка параметрів моделі, кото-1 раю дасть ці значення з найбільшою правдоподібністю в порівнянні з іншими моделями. Відзначимо, що в задачах ухвалення рішення в багатокритерійному випадку згортка критеріїв приводить до втрати інформації: будь-який вектор несе в собі більше інформації, ніж одержуваний з нього скаляр. Точно також, якщо ми хочемо, щоб універсальна модель несла в собі інформації не менше ніж будь-які з існуючих локальних моделей національного, регіонального або світового розвитку, потрібна не „згортка” цих моделей, а організація доступу до всієї групи, що представляється, моделей.

      Нарешті, взаємозв’язка моделей в універсальній моделі повинна бути під контролем деякого глобального універсального векторного критерію. В системі міжнародних відносин дослідник, що стоїть на позиції детермінізму, повинен визнавати наявність світового порядку як вищої мети над національними (локальними) критеріями. Такий критерій може реалізовуватися в конкретних випадках по-різному, він може бути інтерпретований різними способами, але, безумовно, одне - такий критерій повинен бути вкладений в інший, більш могутній, але він не може бути незрівнянний з іншим таким критерієм. Одним з таких критеріїв в теорії міжнародних відносин є поняття „потужності”, „могутність” - термін „POWER”, введений Г. Моргентау і має витоки в античній теорії державного пристрою як символ справедливого правління.

 

       1.2.3. Функціональні  простори і проблема  представлення залежності  як суперпозиції елементарних

      Розглядаючи політичні процеси і об'єкти як функції на безлічі політичних індикаторів, ми тим самим стаємо перед проблемою  характеризації цих математичних об'єктів, знаходженні серед них основних, базових, з яких виходить безліч інших досліджуваних об'єктів. Інша виникаюча проблема - це проблема метрики, тобто, які об'єкти (функції) ми вважатимемо близькими (схожими), а які навпроти далекими, істотно тими, що розрізняються по своїх характеристиках.

      У виникаючих моделях в системі  міжнародних відносин разом з проблемою метрики (тобто, фактично характеризації виникаючих функціональних просторів) виникає проблема допустимості даних математичних абстракцій. Відомий парадокс Кантора, пов'язаний з категорією „безлічі взагалі всіх множин” приводить до нерозв'язної суперечності, вихід з якої, очевидно, тільки один - заборонити розгляд подібних конструкцій. Тим самим ставляться певні межі абстрагуванню. Це ж питання виникає при розгляді допустимої безлічі функцій, створюючи дані функціональні простори (ясно, що раз не можна розглядати „безліч узагалі всіх множин”, отже, не можна розглядати і характеристичну функцію цієї множини.

      Проблема  функціональної залежності, проте, багато складніше апорій Зенона. Кантора  і т.п.

      Інтуїтивне  сприйняття функціональної залежності як прояв зв'язку явищ в різних модифікаціях властиве людству з давніх часів, математика протягом всієї історії свого розвитку тими або іншими засобами намагалася виразити цей зв'язок.

      Починаючи з навчанням античних математиків  про геометричні місця і складанням всіляких таблиць поняття функції зазнавало всі нові і нові зміни. Згадки про функціональну залежність зустрічаються у П. Ферма( 1636 р.), Р. Декарта (1637 р.), И. Барроу (1669 р.). Термін „функція” зобов'язаний своєю появою В. Лейбніцу(1692 р.). Так чи інакше поняття функції зв'язувалося з якимсь аналітичним виразом, задаючим її, Так у И. Бернуллі (1718 р.) „функція, це величина, складена із змінної і постійної”; у Л. Ейлера „функція змінної кількості є аналітичний вираз, складений яким-небудь чином з цієї змінної кількості, чисел або постійних кількостей”.

      Перехід від інтуїтивного сприйняття функції  до її більш менш схожому на сучасне  визначення намітився в знаменитій суперечці про звучну струну.

      В XVIII столітті, закінчивши вивчення систем з одним ступенем свободи, математики переходять до систем з декількома ступенями. В 1727 р. Іоганн Бернуллі, а в 1732-1736 рр. Данило Бернуллі і Леонард Ейлер розглядають тільки головні коливання навантаженої невагомої струни. Розглядаючи тільки головні коливання системи, ні Бернуллі, ні Ейлер не помітили, що у разі довільного руху справедливий принцип суперпозиції, тобто складання головних коливань, хоча теоретики музики (Рамо, наприклад, в 1726 р.) давно указували, що окрім основного тону музичного інструменту є ще і обертони. Існував навіть помилковий погляд, що головними коливаннями струни і вичерпуються всі можливі коливання системи (Тейлор, Д. Бернуллі).

      Рішення задачі про струну, дане майже одночасно  Д'Аламбером і Л. Ейлером (відповідно в 1747 і 1748 рр.) при зовні формальній схожості мали принципово різний зміст, що виражається в різному розумінні Функції. Якщо Д'Аламбер усюди під функцією розумів певний аналітичний вираз, то Ейлер, не відкидаючи це, допуску функції як відповідність за допомогою кривої, утвореної „вільним рухом руки”, або навіть Функції змішаного типу, тобто на одних ділянках один аналітичний вираз, на інших інше або навіть довільна крива.

      Трапилося так, що розвиток конкретного матеріалу  переріс рамки концепцій і  точок зору, що склалися раніше, на основні поняття аналізу. Відсутність належної строгості в обгрунтовуванні накопичених результатів, настійні вимоги коштують практичних задач приводили до перегляду основ аналізу таких як „довільна крива”, „функція”, „інтеграл” і т.п. Губився органічний зв'язок між чистим і прикладним знанням, здорова рівновага між абстрактною спільністю і повнокровною конкретністю була порушена „...віддавшись справжній оргії інтуїтивних припущень, перемішуючи несуперечливі висновки з безглуздими, підлога у містично мі твердженнями, сліпи довіряючись надлюдській силі формальних процедур (математики) відкрили новий математичний світ, повний незчисленних багатств...”. Але вимоги евклідової строгості і внутрішньої естетики брали своє.

Информация о работе Економіко – математичне моделювання