Автор: Пользователь скрыл имя, 17 Января 2012 в 16:28, курсовая работа
Математичне моделювання як кількісний інструментарій дослідника по суті своїй належить не тільки математиці - воно має самостійне значення, і свою історію. Примітно, що один і той же математичний апарат зустрічається в описі різних об'єктів в різних наукових дисциплінах. Тим самим математичне моделювання є міждисциплінарною категорією. Математичні методи, що зарекомендували себе в першу чергу у фізиці і інших природничонаукових дисциплінах, згодом з розвитком самої математики знайшли успішне вживання і в гуманітарних науках. Економіко-математичне моделювання і моделювання політичної сфери виявляють собою наочний приклад плідного вживання математичної ідеї в наукових дослідженнях.
Вступ.
Розвиток методології економіко-математичного моделювання:
Історія економіко - математичної ідеї;
Економіко-математичні методи і моделі в працях зарубіжних дослідників;
Економіко-математичні методи і моделі в працях вітчизняних економістів.
Математичне моделювання і зовнішньополітичні дослідження:
Проблема методу в політичних дослідженнях;
Необхідність побудови математичних моделей зовнішньополітичної поведінки на єдиній методологічній основі;
Функціональні простори і проблема представлення залежності як суперпозиції елементарних;
Основні підходи використовування систем індикаторів для аналізу зовнішньополітичних процесів;
Простір індикаторів в системі міжнародних відносин: основні задачі метатеорії.
Висновок.
Список використаної літератури.
Тим самим, економетрія в її нинішньому розумінні є в деякому розумінні вершиною тривалого розвитку економіко-математичної ідеї, що використовує новітні досягнення математичної науки.
Тим
часом, математична сторона економіко-
Математика як така зародилася з практичних потреб рахунку, числення часу, вимірювання ділянок і об'ємів судин. Накопичення фактичного матеріалу йшло по шляху розвитку уявлень про числа і фігури, створення усної і письмової системи числення, виникнення зачатків арифметики і геометрії. Вважаючи Евкліда основоположником побудови математичної теорії „від аксіом до висновків” слід зазначити, що уявлення про аксіоматичний метод з'явилися задовго до Евкліда. Так, попередниками Евкліда в аксіоматичному методі є, зокрема, Гіппократ, Платон і Арістотель. В той же час „Початку” Евкліда з'явилися зразком побудови будь-якої змістовної теорії і стали еталоном. В геометрії Евкліда постулюються (аксіоматизуються) накопичені тисячоліттями геометричні знання. Таке розуміння аксіоматизації одержало назву змістовного (інтуїтивного) і лише в XIX столітті мав місце перехід до формального розуміння аксіоматичного методу, коли була відкрита неевклідові геометрія. Саме з появою неевклідових геометрії зрозуміла можливість створення математичних теорій шляхом правильно виконаної абстракції від обмежень, що накладалися раніше. У зв'язку з виниклим питанням про несуперечність нових аксіоматичних теорій (зокрема, неевклідових геометрії) виникло питання про побудову конкретної моделі, на якій та або інша аксіоматика реалізується. В роботах західних дослідників Бельтрамі, Клейна і Пуанкаре і був повністю досліджено питання про несуперечність неевклідових геометрії.
Академік А.И. Колмогоров розділяє всю історію математики на чотири періоди: періоди зародження математики, елементарної математики, математики змінних величин і сучасної математики.
Період елементарної математики (від VI в. до н.е. по XVI в. включно) починається з приведення накопичених знань в систему і характеризується в основному успіхами у вивченні постійних величин. Цей період закінчується початками вивчень процесів руху.
Період
математики змінних величин (XVII-XIX століття)
починається з аналітичної
Період сучасної математики (середина XIX століття і до теперішнього часу) характеризується украй широким розгалуженням математики. Д. Гільберт, в докладі на міжнародному математичному конгресі 1900 р. відзначив: „... чи осуджена математика на загибель подібно іншим наукам, що розділилися на окремі галузі, представники яких ледве розуміють один одного, і зв'язок між якими стає все більш слабким?...я не вірю в це і не бажаю цього. Математична наука, в моєму розумінні, є неподільне ціле, організм, життєвість якого обумовлена зв'язком його частин... нам ясна схожість логічних апаратів, взаємозв'язок ідей в математиці як в цілому і численні аналогії між її різними областями... радісно, що з розвитком математики її органічний характер не тільки не втрачається, але і виявляється ще більш ясно.., чим далі розвивається математична теорія, тим більше гармонійно і однорідно розвивається її конструкція і відкриваються безперечні зв'язки між далекими до того областями науки”.
На жаль, час вносить свої корективи, і на рубежі тисячоліть, не дивлячись на всі спроби повторити і поповнити прогнози Гільберта, більш менш стрункого і повного аналога не вийшло. Поширена думка, що з відходом А.Н. Колмогорова в світі не залишилося математика, здатного розуміти співтовариство своїх колег, що неймовірно розширилося, що не так вже і недивно, якщо врахувати, що експоненціальне зростання кількості інформації перевершує фізіологічні здібності людського мозку до нарощування осмисленої інформації.
Розуміння того факту, що якісне використовування напрацьованого століттями економіко-математичного апарату неможливе без аналізу і розуміння витоків його виникнення і основних віх розвитку, приводить до необхідності дослідження в повній відповідності з принципом системності: від перших дослідів побудови математичних моделей в економіці до їх сучасного стану.
Побудова математичних моделей в суспільних науках має, ймовірно, корені у використовуванні фізичних аналогій при вивченні соціальних процесів - соціальна фізика XVII-XVIII ст. Так, Спіноза вважав, що люди один одного відштовхують через фізичний закон, навпаки, Г. Гроцій вважав, що має місце зворотне тяжіння людей один до одного. О. Фур’є в своєму „Вченні про пристрасті” вважав атрибутом (невід'ємною частиною) людини його прагнення до об'єднання в групи, що визначається психологічними чинниками. Поведінкові теорії в своїх спробах пояснити ті або інші процеси в соціальному ареалі шукали аналогії в тваринному світі. Так, в політиці на базі теорії біхейвіорізму з'явився напрям „біхейвіоралізм”. Поняття функції корисності сходить в своєму розвитку до статті Д. Бернуллі від 1738 р., а перша спроба кількісно описати національну економіку належить французькому економісту Ф. Кене (1694-1774).
Сам термін „економіко-математичні методи і моделі” з'явився лише в XX столітті. До цього економіко-математична наука розвивалася лише в рамках політичної економії, а пізніше в рамках чистої економічної теорії. Термін „політична економія” був введений у Франції в 1614 р. Антуаном де Монкретьеном і позначав науку про державне господарство, про економіку національних держав. Політична економія розглядалася А.Смітом як галузь знання, необхідна державному діячу і законодавцю, як наука „про збагачення як народу, так і держави”.
З моменту виходу книги англійського економіста Альфреда Маршалла „Принципи економіки” в 1890 р. з'являється термін „економічна теорія”, що розуміється як суспільна наука, що вивчає поведінку людей в процесі виробництва, обміну і споживання благ і послуг. Термін „політична економія” зберігся лише в тій частині економічної теорії, яка торкається ролі в регулюванні економіки.
Перша кількісна модель економіки, належна Франсуа Кене (1694-1774), містила зачатки таких майбутніх теорій як теорія ринку, модель мультиплікатора, теорія економічної динаміки і т.п.
Вальрас Леон (1834-1910), швейцарський економіст, побудував узагальнену модель економіки, очолюючи кафедру політичної економії в лозаннському університеті.
Парето Вільфредо (1848-1923) змінив Вальраса на посту завідуючого кафедрою лозаннського університету. Відомий своїм знаменитим принципом Парето: „всяка зміна, яка нікому не приносить збитків, і яка деяким людям приносить користь (за їх власною оцінкою), є поліпшенням”.
Засновники
маржиналістських (граничних) теорій в
економіці – граничної
Маршал Альфред (1842-1924), англійський економіст, керівник кафедри політекономії кембріджського університету, засновник неокласичної економічної теорії, математичної економіки.
Кейнс Джон Мейнард (1883-1946), англійський економіст і державний діяч, засновник макроекономіки, активний прихильник державного регулювання економіки. Розробив модель загальної економічної рівноваги, розвинув поняття мультиплікатора, автор моделей грошового обігу, інфляції, міжнародної грошової системи.
Істотний внесок в створенні і використовуванні економетричних моделей внесли Рональд Фішер (1890-1962) - англійський статист і генетик, Рагнар Фріш (1895-1973) - норвезький економіст, лауреат Нобелівської премії по економіці 1969 р. за „науковий внесок у формування понять економетрії і математичної економіки”.
Історично правильний виклад динаміки зародження і становлення ідеї економіко-математичного походу є складною задачею зважаючи на величезну кількість фактичного матеріалу, різноманітності різних шкіл і переконань, їх взаємозв'язків і переплетень, різного відношення економістів до основ економічної теорії, її розвитку і структури.
Неоднозначність, поглядів і наявність різних шкіл і напрямів в економічній науці пояснюється різними підходами до аналізу економічної дійсності. Таким же чином пояснюються і різні типології, тобто способи розподілу економістів по школах і напрямах досліджень. Виникає питання про класифікацію класифікацій, тобто про встановлення методів ранжирування економічних шкіл і концепцій. Природне і питання про впорядковування подібних шкіл і концепцій по їх статусу. Відомо, що найвищий статус в подібній класифікації мають макро - і мікротеорії, потім йдуть економетрія, кредитно-грошові відносини, міжнародна торгівля, фінанси, історія економічної науки і теорія порівняння економічних систем - компаравистика. У формуванні тих або інших шкіл можуть домінувати як імена окремих видатних осіб, так і інші, наприклад, географічні принципи (кембріджська, стокгольмська школи), а також окремі наукові принципи (позитивізм, нормативізм, меркантилізм). Прийнято вважати, що знання історії економіко-математичної думки не належить виключно історії - воно несе елементи наших сьогоднішніх і завтрашніх уявлень і поглядів. Для глибокого розуміння дійсності недостатньо знайомства з якою-небудь однією концепцією або теорією в чистому вигляді не застосовується по суті жодна з теорій, що вивчаються.
При
класифікації економічних теорій слід
зазначити, що з часом міняються
не тільки їх назви, але і їх зміст,
вони переживають періоди еволюції,
зростання і спаду
В різних економічних теоріях по різному використовуються економіко-математичні ідеї. В цьому значенні можна говорити про більш „математизовані” теорії (школах), або менш „математизованих”. Учені-економісти створювали своє уявлення про економіку, або свою модель економіки, на шляхах пошуку закономірностей вони виділяли на їх думку головні, зводили їх в принципи і намагалися логічно вивести з них окремі (приватні) економічні закони. При аналізі економічних процесів математичними методами неминуче доводиться дотримуватися тієї або іншої економічної концепції. Сукупність вживаних приватних принципів і економічних законів часто називають економічною політикою. В будь-якій концепції економіко-математичного моделювання ця економічна основа є видимою - так, відомий фахівець в області математичного моделювання економіки В.И. Малихін постійно підкреслює, що дотримується так званого неокласичного напряму в економіці, має корені в навчанні Адама Сміта (1723-1790), що вважав, що окремі учасники економіки діють незалежно один від одного, якась „невидима рука” проте координує їх дії, роль держави мінімальна.
Послідовників А.Сміта називають „класиками”. Відзначимо також послідовників Джона Кейнса (1883-1946), які називаються „кейнсіанцями”, вважаючи, що в певні моменти роль держави може бути визначаючою, грошовий обіг має самостійне значення, а не є тільки віддзеркалення обігу товарів і послуг.
Попередницями класичної теорії є ідеї стародавнього миру, цивілізацій Стародавнього Сходу і Стародавньої Греції, пов'язані з іменами Конфуція (551-479 рр. до н.е.), Ксенофонта (430-354 рр. до н.е.), а також Платона (423-347 рр. до н.е.) і Арістотеля (384-322 р.р. до н.е.). Економічна думка середньовіччя (Хома Аквінський, 1225-1274 рр. і ін.) і пізнього феодалізму дали поштовх до більш змістовних економічних теорій, характерним прикладом яких є концепція меркантилізму. Послідовники меркантилізму бачили в зовнішній торгівлі джерело багатства за рахунок активного торгового балансу. Меркантилістами в самому закінченому вигляді була розвинена металістична теорія грошей як багатстві нації. Найвідоміші послідовники меркантилізму в Англії - У.Стаффорд (1554-1612), Т. Манн (1571-1641). У Франції велику популярність здобули А. Монкретьен (1575-1621) і Ж. Кольбер (1619-1693).
Класичний напрям в економіці заснований на трудовій теорії вартості, головним принципом якого було повне невтручання держави в питання економіки. Біля витоків цієї школи стояли У. Петі (Англія), 1623-1687) і П. Буагильбер (Франція, 1646-1714). Розвиток цієї школи пов'язаний з іменами А. Сміта, Д. Рікардо, Т. Мальтуса, Ж.Б. Сея, Ф. Бастіа - Процес розвитку класичної школи завершується працями Дж. С. Миля і До. Маркса.
Класичний напрям в економіці дав також теорію фізіократії, пов'язану з дослідженнями у Франції, основною задачею яких ставили сільсько-господарське виробництво. Основоположник школи фізіократів Ф. Кене (1694-1774) був автором „Економічної таблиці”, в якій показано, як сукупний річний продукт, створений в сільському господарстві, розподіляється між класами. Іншим видним представником теорії фізіократії був А. Тюрго (1727-1781), вперше що сформулював закон убуваючої родючості грунтів.
Класична школа мала різні напрями свого подальшого розвитку. Одним з напрямів переходу до неокласицизму була концепція використовування теорії граничних величин в економіці - маржиналізм. Перший етап маржиналізму - 70-80 роки XIX століття пов'язаний з іменами У. Джевонса (1835-1882), засновника математичної школи, К. Менгера (1840-1921) - засновника австрійської школи і Л. Вальраса (1834-1910) засновника лозаннской школи. Цей етап одержав назву „суб'єктивного напряму” в політичній економії, внаслідок введення умови визначення цінності товару. Другий етап маржиналізму відносять до 90-м рокам XIX століття і пов'язують з іменами А. Маршалла (1842-1924) і Д. Кларка (1847-1938). Видними розробниками теорії маржиналізму були, також засновник англійської школи маржиналізму А. Пігу (1877-1958) і австрійський економіст І. Шумпетер (1883-1950).