Автор: Пользователь скрыл имя, 25 Апреля 2013 в 13:56, курс лекций
О принципиальной осуществимости процесса судят по величине изменения энергии Гиббса системы. Однако эта величина ничего не говорит о реальной возможности протекания реакции в данных конкретных условиях, не дает никакого представления о скорости и механизме процесса. Например, реакция взаимодействия оксида азота (II) с кислородом
Понятие о скорости химических реакций (х.р.)………. 4
Закон действующих масс (з.д.м.)……………………… 6
Молекулярность и порядок реакций…………………… 7
Влияние температуры на скорость реакции…………... 9
Влияние катализатора на скорость реакции…………… 14
Сложные реакции……………………………………….. 20
3)Повышение давления в равновесной системе вызывает реакцию, сопровождающуюся уменьшением числа частиц в газовой фазе, равновесие смещается в сторону меньшего числа газообразных частиц.
В данной реакции увеличение давления сместит равновесие вправо, а уменьшение - влево.
Принцип Ле Шателье применим не только к гомогенным системам , но и к гетерогенным. Гомогенные реакции протекают в однофазной системе и во всем объеме, гетерогенные - в многофазной , на поверхности раздела фаз.
В качестве примера рассмотрим гетерогенную реакцию восстановления оксида углерода (IV).
С(тв ) + СО2(г) 2СО(г) DH0 = 172,46 кДж
1)Увеличение концентрации СО2(г) сместит равновесие вправо, а СО влево.
2)Поскольку процесс эндотермический, то нагревание сместит равновесие вправо, в сторону увеличения выхода СО, а ее охлаждение - влево.
3)Повышение давления
будет препятствовать
З.д.м. применим к гетерогенным
системам лишь с определенными допущениями. Рассмотрим гетерогенную реакцию термической
диссоциации карбоната кальция.
CaCO3(тв) = CaO(тв) + СО2(г)
Если бы она протекала как гомогенная, то
Тогда k1 = К ·[CаCО3] / [CaO] и k1 = [CО2] равновесная концентрация [CО2] при данной температуре является величиной постоянной, не зависящей от количеств CаО и CаСО3.
Вопрос 4. Фазовые равновесия. Правило фаз Гиббса
К гетерогенным равновесиям
относится также фазовое
С = К + 2 - Ф или Ф + С = К + 2,
К – число компонентов
Ф – число фаз в системе
Число степеней свободы – характеризует вариантность системы, т.е. число независимых переменных (Р, Т и С), которые можно произвольно изменять в некоторых пределах так, чтобы число равновесных фаз в системе осталось неизменным.
Например, состояние
идеального газа
[ лед ] ↔ {вода} ↔ (пар)
предложено называть инвариантной, если (С = 0).
моновариантной, если (С = 1),
бивариантной , если (С = 2).
Компонентами называются независимые составляющие, наименьшего числа которых вполне достаточно чтобы построить любую фазу в системе, находящейся в равновесии. В физических системах число компонентов равно числу составляющих систему веществ, т.к. вещества не вступают между собой в химическое взаимодействие.
Например, физическая система состоящая из воды, льда и водяного пара при 0,010С и 612 Па, однокомпонентна, поскольку для формирования всех 3-х фаз в системе достаточно одного индивидуального вещества – воды. Она инвариантна т.к. нельзя изменить ни Т, ни Р в системе, не изменив числа фаз.
В химических системах число компонентов меньше числа составляющих веществ на число уравнений, по которым вещества, образующие систему, обратимо реагируют между собой. Рассмотрим на конкретном примере подсчет числа компонентов химической системы:
CaCO3(тв)
(равновесная гетерогенная система)
Составляющих веществ – 3.Число уравнений их связывающих в системе равно одному. Число компонентов К = 3 – 1 = 2. Значит эта система двухкомпонентна.
Фазой называется гомогенная часть гетерогенной системы, обладающая одинаковым химическим составом и термодинамическими свойствами, ограниченная поверхностью раздела.
Диаграммы, отражающие зависимость физических свойств от состава, которые не могут быть представлены в виде функции только давления, температуры и концентрации – называются диаграммами состав - свойство.
Рассмотрим диаграмму физической равновесной однокомпонентной системы
В условиях равновесия, три области диаграммы, соответствующие существованию воды в твердом, жидком и газообразном состояниях, разграничиваются тремя кривыми линиям, которые сходятся в общей точке О. Кривая ОА разделяющая жидкое и газообразное состояние, определяет значения Р и Т , при которых осуществляется кипение. Например, при давлении 1атм Ткип= 1000С (x), при более низких давлениях Ткип соответственно понижается. В частности вода может кипеть при комнатной температуре, если снизить давление над поверхностью воды до 0,003атм. И наоборот, повышение давления приводит к возрастанию температуры кипения воды до тех пор, пока не будет достигнута критическая точка А. При температуре, отвечающей этой точке – критической температуре - величины, характеризующие физические свойства жидкости и пара становятся одинаковыми, так что различие между жидким и парообразным состоянием исчезает.
( · ) О [лед] « {вода} « (пар)
( · ) О – называется тройной точкой в равновесии сосуществуют три фазы - лед, вода и пар, число фаз = 3.
С = 1 + 2 – 3 = 0 - система инвариантна,
нельзя менять параметры, они должны быть строго постоянными: Т =273К, Р =610,5 Па (6,03∙ 10-3 атм, 4,6 мм.рт.ст.).
Но ни все вещества могут находиться во всех агрегатных состояниях. Так карбонат кальция невозможно получить ни в жидком , ни в газообразном состоянии.
(―) ОА {вода} « (пар) (по линии ОА в равновесии пар и вода)
(―) ОС {вода} « [лед]
(―) ОВ [лед] « (пар)
Точка (а) – в равновесии 2 фазы, пар и вода. С = 1+ 2 – 2 = 1 –моновариантная система, один из параметров может меняться произвольно, Р или Т.
Точка (б) – в равновесии вода. С = 1 + 2 – 1 = 2 – бивариантная система, могут произвольно меняться 2 параметра Р и С, Т и С.
Изменение фазового состояния вещества, т.е. переход одного физического состояния в другое (например, плавление, испарение, сублимация) всегда приводит к изменению энтальпии. Температура, при которой происходит фазовое превращение называется температурой перехода.
Стандартной молярной энтальпией плавления DHпл. называется изменение энтальпии , которым сопровождается плавление одного моль вещества при его температуре плавления и давлении 1атм.
Стандартной молярной энтальпией испарения DHисп. называется изменение энтальпии , которым сопровождается испарение одного моль вещества при его температуре кипения и давлении 1атм. Молярная энтальпия испарения воды имеет аномально большое значение, это объясняется наличием водородных связей.
При растворении твердого тела в воде, растворение прекращается, когда между растворенным веществом и находящимися в растворе молекулами того же вещества установится равновесие.
Информация о работе Кинетика химических реакций. химическое равновесие