Каталитические процессы гидрокрекинга нефтяного сырья

Автор: Пользователь скрыл имя, 06 Мая 2015 в 19:15, реферат

Краткое описание

Гидрокрекинг - каталитический процесс переработки нефтяных дистиллятов и остатков при умеренных температурах и повышен¬ных давлениях водорода на полифункциональных катализаторах, об¬ладающих гидрирующими и кислотными свойствами.
Гидрокрекинг позволяет получать с высокими выходами широ¬кий ассортимент высококачественных нефтепродуктов (сжиженных газов С3 - С4, бензина, реактивного и дизельного топлив, компонен¬тов масел). Сырье - любое нефтяное сырьё.

Файлы: 1 файл

04. Гидрокрекинг.docx

— 36.00 Кб (Скачать)

Каталитические процессы гидрокрекинга нефтяного сырья

 

Гидрокрекинг - каталитический процесс переработки нефтяных дистиллятов и остатков при умеренных температурах и повышенных давлениях водорода на полифункциональных катализаторах, обладающих гидрирующими и кислотными свойствами.

Гидрокрекинг позволяет получать с высокими выходами широкий ассортимент высококачественных нефтепродуктов (сжиженных газов С3 - С4, бензина, реактивного и дизельного топлив, компонентов масел). Сырье -  любое нефтяное сырьё.

 Ассортимент определяется подбором соответствующих катализаторов и технологических условий.

 В современной нефтепереработке реализованы следующие типы промышленных процессов гидрокрекинга:

  1. гидрокрекинг бензиновых фракций с целью получения легких изопарафиновых углеводородов, представляющих собой ценное сырье для производства синтетического каучука, высокооктановых добавок к автомобильным бензинам;
  2. селективный гидрокрекинг бензинов с целью повышения октанового числа, реактивных и дизельных топлив с целью понижения температуры их застывания;
  3. гидродеароматизация прямогонных керосиновых фракций и газойлей каталитического крекинга с целью снижения содержания в них ароматических углеводородов;
  4. легкий гидрокрекинг вакуумных газойлей с целью облагораживания сырья каталитического крекинга с одновременным получением дизельных фракций;
  5. гидрокрекинг вакуумных дистиллятов с целью получения моторных топлив и основы высокоиндексных масел;
  6. гидрокрекинг нефтяных остатков с целью получения моторных топлив, смазочных масел, малосернистых котельных топлив и сырья для каталитического крекинга.

Особенность химизма и механизма реакций гидрокрекинга. Катализаторы процесса. Гидрокрекинг можно рассматривать как совмещенный процесс, в котором одновременно осуществляются реакции как гидрогенолиза (то есть разрыв связей С -S, С -N и С -О) и дегидро-гидрирования, так и крекинга (то есть разрыв связи С -С), но без коксообразования, с получением продуктов более низкомолекулярных по сравнению с исходным сырьем, очищенных от гетероатомов, не содержащих олефинов, но менее ароматизированных, чем при каталитическом крекинге.

Результаты гидрокрекинга (материальный баланс и качество продуктов) нефтяного сырья в сильной степени определяются свойствами катализатора: его гидрирующей и кислотной активностями и их соотношением. В зависимости от целевого назначения могут применяться катализаторы с преобладанием либо гидрирующей, либо крекирующей активностью. В результате будут получаться продукты соответственно легкого или глубокого гидрокрекинга.

В основе каталитических процессов гидрокрекинга нефтяного сырья лежат реакции:

  • гидрогенолиза гетероорганических соединений серы, азота, кислорода и гидрирование ароматических углеводородов и непредельных соединений (то есть все те реакции, которые протекают при гидрооблагораживании);

крекинга парафиновых и нафтеновых углеводородов, деалкилирования циклических структур и изомеризации образующихся низкомолекулярных парафинов.

Гидрокрекинг в отличие от крекинга не протекают реакции ароматизации и поликонденсации до кокса. Отличается от катализатора крекинга количеством водорода в реакционной смеси и более низкой температурой процесса, что приводит к термодинамическим ограничениям, гидрированию коксогенов по средствам спилловера водорода (способность перетекать атома водорода с одного активного центра катализатора на другой), но количество водорода не должно превышать некоторого предела, когда количество водорода может приводить к конкуренции за активные центры поверхности катализатора с молекулами реагирующих веществ.

При гидрокрекинге аналогично гидроочистке образуется H2S, NH3, H2O. Происходит разрыв ароматики, иногда и нафтеновых колец и деалкилирования.

Гидрокрекинг высокомолекулярных парафинов на катализаторах с высокой кислотной активностью осуществляется по карбений-ионному механизму преимущественно с разрывом в средней части с наименьшей энергией связи С-С. Как и при каталитическом крекинге, вначале на металлических центрах катализатора происходит дегидрирование парафинов с образованием алкенов. Затем алкены на кислотных центрах легко превращаются в карбкатионы и инициируют цепной карбений-ионный процесс. Скорость гидрокрекинга при этом также возрастает с увеличением молекулярной массы ал-канов.

Изопарафины с третичными углеродными атомами подвергаются крекингу со значительно большей скоростью, чем нормальные алканы. Так как распад карбений-ионов с отщеплением фрагментов, содержащих менее трех атомов углерода, сильно эндотер-мичен, при гидрокрекинге почти не образуется метан и этан и высок выход изобутана и изопентанов (больше равновесного). На катализаторах с высокой гидрирующей и умеренной кислотной активностями происходит интенсивное насыщение карбений-ионов, в результате образуются парафины с большим числом атомов углерода в молекуле, но менее изомеризованные, чем на катализаторах с высокой кислотностью.

Основные отличия гидрокрекинга от каталитического крекинга заключаются в том, что общая конверсия парафинов выше в первом процессе, чем во втором. Это обусловлено легкостью образования алкенов на гидро-дегидрирующих центрах катализаторов гидрокрекинга. Инициирование цепи - при гидрокрекинге протекает быстрее, чем при каталитическом крекинге без водорода. Катализаторы гидрокрекинга практически не закоксовываются, так как алкены подвергаются быстрому гидрированию и не успевают вступать в дальнейшие превращения с образованием продуктов полимеризации и уплотнения.

Нафтены с длинными алкильными цепями при гидрокрекинге на катализаторах с высокой кислотной активностью подвергаются изомеризации и распаду цепей, как парафиновые углеводороды. Расщепление кольца происходит в небольшой степени. Интенсивно протекают реакции изомеризации шестичленных в пятичленные нафтены. Бициклические нафтены превращаются преимущественно в моноциклические с высоким выходом производных циклопентана. На катализаторах с низкой кислотной активностью протекает в основном гидрогенолиз - расщепление кольца с последующим насыщением образовавшегося углеводорода.

Катализаторы.

Ассортимент современных катализаторов гидрокрекинга достаточно обширен, что объясняется разнообразием назначений процесса. Обычно они состоят из следующих трех компонентов: кислотного, дегидро-гидрирующего и связующего, обеспечивающего механическую прочность и пористую структуру.

В качестве кислотного компонента, выполняющего крекирующую и изомеризующую функции, используют твердые кислоты, входящие в состав катализаторов крекинга: цеолиты, алюмосиликаты и оксид алюминия. Для усиления кислотности в катализатор иногда вводят галоген.

Гидрирующим компонентом обычно служат те металлы, которые входят в состав катализаторов гидроочистки: металлы VIII (Ni, Со, иногда Pt или Pd) и VI групп (Мо или W). Для активирования катализаторов гидрокрекинга используют также разнообразные промоторы: рений, родий, иридий, редкоземельные элементы и др. Функции связующего часто выполняет кислотный компонент (оксид алюминия, алюмосиликаты), а также оксиды кремния, титана, циркония, магний- и цирконийсиликаты.

Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п- и р-проводимостями): они активны как в реакциях гидрирования -дегидрирования (гемолитических), так и в гетеролитических реакциях гидрогеноли-за гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод - углеродных связей. Поэтому для осуществления реакций крекинга углеводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум три-функциональными, а селективного гидрокрекинга - тетрафункциональными, если учесть их молекулярно-ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмосиликате - крупнопористом носителе - в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводородов сырья, в то время как на цеолите - реакции последующего более глубокого крекинга - с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отнести к полифункциональным.

Значительно лучшие результаты гидрокрекинга достигаются при использовании катализаторов с высокой кислотной и оптимальной гидрирующей активностями, достоинства которых применительно к промышленным видам сырья заключаются в следующем.

  1. Низок выход парафинов С, - С3 и особенно метана и этана.
  2. Бутановая фракция содержит 60 - 80 % изобутана.
  3. Пентановая и гексановая фракции на 90 - 96 % состоят из изомеров. Циклопарафины С6 содержат около 90 % метилциклопентана. В результате легкий бензин (до 85 °С), содержащий 80-90 % парафинов, до 5 % бензола и 10 - 20 % нафтенов, имеет достаточно высокие антидетонационные характеристики: ОЧИМ составляют 85-88.
  4. Бензины С7 и выше содержат 40-50 % нафтенов, 0-20 % ароматических и являются исключительно качественным сырьем риформинга.
  5. Керосиновые фракции ввиду высокого содержания изопарафинов и низкого - бициклических ароматических углеводородов являются высококачественным топливом для реактивных двигателей.
  6. Дизельные фракции содержат мало ароматических углеводородов и преимущественно состоят из производных циклопентана и циклогексана, имеют высокие цетановые числа и относительно низкие температуры застывания.

Большое значение уделяется в настоящее время катализаторам на цеолитной основе. Они обладают высокой гидрокрекирующей активностью и хорошей избирательностью. Кроме того, они позволяют проводить процесс иногда без предварительной очистки сырья от азотсодержащих соединений. Содержание в сырье до 0,2 % азота практически не влияет на их активность. Повышенная активность катализаторов гидрокрекинга на основе цеолитов обусловливается более высокой концентрацией активных кислотных центров (бренстедовских) в кристаллической структуре по сравнению с аморфными алюмосиликатными компонентами.

В случае переработки тяжелого сырья наибольшую опасность для дезактивации катализаторов гидрокрекинга представляют, кроме азотистых оснований, асфальтены и прежде всего содержащиеся в них металлы, такие, как никель и ванадий. Поэтому гидрокрекинг сырья, содержащего значительное количество гетеро- и металлорганических соединений, вынужденно проводят в две и более ступеней. На первой ступени в основном проходит гидроочистка и неглубокий гидрокрекинг полициклических ароматических углеводородов (а также деметаллизация). Катализаторы этой ступени идентичны катализаторам гидроочистки. На второй ступени облагороженное сырье перерабатывают на катализаторе с высокой кислотной и умеренной гидрирующей активностями.

При гидрокрекинге нефтяных остатков исходное сырье целесообразно подвергнуть предварительной деметаллизации и гидрообес-сериванию  на серо- и азотостойких катализаторах с высокой металлоемкостью и достаточно высокой гидрирующей, но низкой крекирующей активностями.

В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно-ситовым действием: поры цеолитов доступны только для молекул нормальных парафинов. Дегидро-гидрирующие функции в таких катализаторах выполняют те же металлы и соединения, что и в процессах гидроочистки.

Основные параметры процессов гидрокрекинга.

Температура.

Оптимальный интервал температур для процессов гидрокрекинга составляет 360 - 440°С с постепенным их повышением от нижней границы к верхней по мере падения активности катализатора. При более низкой температуре реакции крекинга протекают с малой скоростью, но при этом более благоприятен химический состав продуктов: большее содержание нафтенов и соотношение изопарафин:н-парафин. Чрезмерное повышение температуры ограничивается термодинамическими факторами (реакций гидрирования полициклической ароматики) и усилением роли реакций газо- и коксообразования.

Давление.

Большинство промышленных установок гидрокрекинга работает под давлением 15—17 МПа. Для гидрокрекинга нефтяных остатков с использованием относительно дорогостоящих катализаторов применяют давление 20 МПа. Гидрокрекинг прямогонных легких газойлей с низким содержанием азота можно проводить при относительно низких давлениях - около 7 МПа.

Объемная скорость подачи сырья при гидрокрекинге вследствие предпочтительности проведения процесса при минимальных температурах обычно низка (0,2 - 0,5 ч -1).

Кратность циркуляции водородсодержашего газа по отношению к перерабатываемому сырью колеблется в зависимости от назначения процесса в пределах 800 - 2000 м3/м3.

Расход водорода зависит от назначения процесса, используемого сырья, катализатора, режима процесса, глубины гидрокрекинга и других факторов. Чем легче продукты гидрокрекинга и тяжелее гидрокрекируемое сырье, тем больше расход водорода и тем выше должно быть соотношение водород:сырье.

Типы процессов гидрокрекинга

Гидрокрекинг бензиновых фракций.

Целевым назначением процесса гидрокрекинга бензиновых фракций является получение изопарафиновых углеводородов С5 -С6 - ценного сырья для производства синтетических каучуков.

Из многочисленных катализаторов, предложенных для этого процесса, промышленное применение получили цеолитсодержащие биметаллические катализаторы, стойкие к каталитическим ядам.

Информация о работе Каталитические процессы гидрокрекинга нефтяного сырья