Автор: Пользователь скрыл имя, 01 Ноября 2011 в 23:27, курсовая работа
Вторая половина ХХ века характерна появлением машин и систем высокой конструктивной сложности, способных выполнять ответственные задачи. В процессе их функционирования стало расти число отказов. Если нет устойчивого образования связанных между собой элементов, то не имеет смысла рассматривать какие – либо другие свойства машины или системы: качество, эффективность, безопасность, живучесть, управляемость, устойчивость. Ибо каждое из приведенных свойств имеет смысл при наличии изначального свойства любой системы – надежности. Поэтому было естественным явлением становление в 50-е годы ХХ века новой научной дисциплины – теории надежности как науки о закономерностях отказов различных систем: сначала технических, а потом и биологических, экономических и других классов систем.
НОРМАТИВНЫЕ ССЫЛКИ 5
ВВЕДЕНИЕ 6
1 Основные понятия теории надежности 7
2 Количественные характеристики надёжности 10
3 Cтруктурно - логический анализ технических систем 14
4 Расчеты структурной надежности систем 17
4.1 Системы с последовательным соединением элементов 17
4.2 Системы с параллельным соединением элементов 18
4.3 Системы типа “m из n” 19
4.4 Мостиковые схемы 21
4.5 Комбинированные системы 24
5 Повышение надежности технических систем 26
5.1 Методы повышения надежности 26
5.2 Расчет надежности систем с резервированием 28
6 Построение структурной схемы технологической линии регенерации нефтяного шлама 32
7 Расчет и оценка надежности технического устройства 35
ЗАКЛЮЧЕНИЕ 41
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 42
СОДЕРЖАНИЕ
НОРМАТИВНЫЕ ССЫЛКИ 5
ВВЕДЕНИЕ 6
1 Основные понятия теории надежности 7
2 Количественные характеристики надёжности 10
3 Cтруктурно - логический анализ технических систем 14
4 Расчеты структурной надежности систем 17
4.1 Системы с последовательным соединением элементов 17
4.2 Системы с параллельным соединением элементов 18
4.3 Системы типа “m из n” 19
4.4 Мостиковые схемы 21
4.5 Комбинированные системы 24
5 Повышение надежности технических систем 26
5.1 Методы повышения надежности 26
5.2 Расчет надежности систем с резервированием 28
6 Построение структурной схемы технологической линии регенерации нефтяного шлама 32
7 Расчет и оценка надежности технического устройства 35
ЗАКЛЮЧЕНИЕ 41
СПИСОК
ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 42
При выполнении курсовой работы использованы следующие нормативные документы:
ГОСТ 2.104-68 ЕСКД. Основные надписи
ГОСТ 2.105-95 ЕСКД. Основные требования к текстовым документам
ГОСТ 2.301-68 ЕСКД. Форматы
ГОСТ 2.316-68 ЕСКД. Правила нанесения на чертежах надписей, технических требований и оформление таблиц
ГОСТ 7.1-2003 СИБИД. Библиографическое описание документа. Общие правила и требования составления документа
ГОСТ 2.004-2002 ЕСКД. Общие требования к выполнению конструкторских и технологических документов на печатающих и графических устройствах вывода ЭВМ
ГОСТ
2.106-96 ЕСКД. Текстовые документы.
Вторая половина ХХ века характерна появлением машин и систем высокой конструктивной сложности, способных выполнять ответственные задачи. В процессе их функционирования стало расти число отказов. Если нет устойчивого образования связанных между собой элементов, то не имеет смысла рассматривать какие – либо другие свойства машины или системы: качество, эффективность, безопасность, живучесть, управляемость, устойчивость. Ибо каждое из приведенных свойств имеет смысл при наличии изначального свойства любой системы – надежности. Поэтому было естественным явлением становление в 50-е годы ХХ века новой научной дисциплины – теории надежности как науки о закономерностях отказов различных систем: сначала технических, а потом и биологических, экономических и других классов систем.
Для
решения задач обеспечения
Проблема обеспечения безопасной и эффективной эксплуатации сложных систем еще далека от полного решения. Человеческие жертвы, радиоактивное заражение больших участков местности, огромные экономические потери – вот характерные результаты отказов сложных систем.
Особенностью проблемы надежности является ее связь со всеми этапами «жизненного цикла» технических систем от зарождения идеи создания до списания: при расчете и проектировании изделия его надёжность закладывается в проект, при изготовлении надежность обеспечивается, при эксплуатации – реализуется. Поэтому проблема надежности - комплексная проблема и решать ее необходимо на всех этапах и разными средствами. На этапе проектирования изделия определяется его структура, производится выбор и разработка элементной базы, поэтому здесь имеются наибольшие возможности обеспечения требуемого уровня надежности технических систем. Основным методом решения этой задачи являются расчеты надежности (в первую очередь безотказности), а в зависимости от структуры объекта и характеристик его составляющих частей, с последующей необходимой коррекцией проекта.
Некоторые
способы расчета структурной надежности
рассматриваются в данной работе.
Термины надежность, безопасность, опасность и риск часто смешивают, при этом их значения перекрываются. Часто термины анализ безопасности или анализ опасности используются как равнозначные понятия. Наряду с термином анализ надежности они относятся к исследованию как работоспособности, отказов оборудования, потери работоспособности, так и процесса их возникновения.
Обеспечение надежности систем охватывает самые различные аспекты человеческой деятельности. Надежность является одной из важнейших характеристик, учитываемых на этапах разработки, проектирования и эксплуатации самых различных технических систем.
Наука о надежности является комплексной наукой и развивается в тесном взаимодействии с другими науками, такими как физика, химия, математика и др., что особенно наглядно проявляется при определении надежности систем большого масштаба и сложности.
Надежность — свойство объекта сохранять во времени в установленных пределах значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, хранения и транспортирования. Недостаточная надежность объекта приводит к огромным затратам на его ремонт, простою машин, прекращению снабжения населения электроэнергией, водой, газом, транспортными средствами, невыполнению ответственных задач, иногда к авариям, связанным с большими экономическими потерями, разрушением крупных объектов и с человеческими жертвами. Чем меньше надежность машин, тем большие партии их приходится изготовлять, что приводит к перерасходу металла, росту производственных мощностей, завышению расходов на ремонт и эксплуатацию.
Надежность объекта является комплексным свойством, ее оценивают по четырем показателям — безотказности, долговечности, ремонтопригодности и сохраняемости или по сочетанию этих свойств.
Безотказность — свойство объекта сохранять работоспособность непрерывно в течение некоторого времени или некоторой наработки. Это свойство особенно важно для машин, отказ в работе которых связан с опасностью для жизни людей. Безотказность свойственна объекту в любом из возможных режимов его существования, в том числе, при хранении и транспортировке.
Долговечность — свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.
В
отличие от безотказности долговечность
характеризуется
Предельное состояние — состояние объекта, при котором его дальнейшая эксплуатация недопустима или нецелесообразна, либо восстановление его работоспособного состояния невозможно или нецелесообразно.
Ремонтопригодность — свойство объекта, заключающееся в его приспособленности к поддержанию и восстановлению работоспособного состояния путем проведения технического обслуживания и ремонта. Важность ремонтопригодности технических систем определяется огромными затратами на ремонт машин.
Сохраняемость — свойство объекта сохранять в заданных пределах значения параметров, характеризующих способность объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования. Практическая роль этого свойства велика для деталей, узлов и механизмов, находящихся на хранении в комплекте запасных принадлежностей.
Объекты подразделяют на невосстанавливаемые, которые не могут быть восстановлены потребителем и подлежат замене (например, электрические лампочки, подшипники, резисторы и т.д.), и восстанавливаемые, которые могут быть восстановлены потребителем (например, телевизор, автомобиль, трактор, станок и т. д.).
Надежность
объекта характеризуется
Исправное состояние — такое состояние объекта, при котором он соответствует всем требованиям нормативно-технической и (или) конструкторской (проектной) документации. Исправное изделие обязательно работоспособно.
Неисправное состояние — такое состояние объекта, при котором он не соответствует хотя бы одному из требований нормативно-технической и (или) конструкторской (проектной) документации. Различают неисправности, не приводящие к отказам, и неисправности, приводящие к отказам. Например, повреждение окраски автомобиля означает его неисправное состояние, но такой автомобиль работоспособен.
Работоспособным состоянием называют такое состояние объекта, при котором он способен выполнять заданные функции, соответствующие требованиям нормативно- технической и (или) конструкторской (проектной) документации.
Неработоспособное изделие является одновременно неисправным.
Отказ — событие, заключающееся в нарушении работоспособного состояния объекта.
Отказы
по характеру возникновения
Случайные отказы вызваны непредусмотренными нагрузками, скрытыми дефектами материалов, погрешностями изготовления, ошибками обслуживающего персонала.
Неслучайные отказы — это закономерные явления, вызывающие постепенное накопление повреждений, связанные с влиянием среды, времени, температуры, облучения и т. п.
В зависимости от возможности прогнозировать момент наступления отказа все отказы подразделяют на внезапные (поломки, заедания, отключения) и постепенные (износ, старение, коррозия).
По
причинам возникновения отказы классифицируют
на конструктивные (вызванные недостатками
конструкции), производственные (вызванные
нарушениями технологии изготовления)
и эксплуатационные (вызванные неправильной
эксплуатацией).
Качественное определение надёжности является недостаточным, т.к. не позволяет учитывать надёжность конкретных устройств на конкретных объектах. Возникает необходимость введения количественных характеристик надёжности.