Автор: Пользователь скрыл имя, 25 Декабря 2012 в 17:06, курсовая работа
Научно-техническая деятельность человечества в конце ХХ века стала ощутимым фактором воздействия на окружающую среду. Тепловое, химическое, радиоактивное и другие загрязнения окружающей среды в последние десятилетия находятся под пристальным вниманием специалистов и вызывают справедливую озабоченность, а иногда - и тревогу общественности. По многим прогнозам проблема защиты окружающей среды в XXI веке станет наиболее значимой для большинства промышленно развитых стран. В подобной ситуации налаженная широкомасштабная и эффективная сеть контроля состояния окружающей среды, особенно в крупных городах и вокруг экологически опасных объектов, может явиться важным элементом обеспечения экологической безопасности и залогом устойчивого развития общества.
Введение…………………………………………………………………………………...5
1. Общая характеристика национальной системы мониторинга окружающей среды (НСМОС)………………………………………………………………………………………6
1.1. Национальная система мониторинга окружающей среды (НСМОС)………………………………………………………………………………….6
1.2. Место и роль локального мониторинга в Национальной системе мониторинга окружа-ющей среды Республики Беларусь……………………………………………………8
1.3. Проведение локального мониторинга сбросов сточных вод в поверхностные водные объекты в Национальной системе мониторинга окружающей среды Республики Бела-русь………………………………………………………………………………………..10
2. Характеристика промышленного объекта как источника воздействия на окружающую среду…………………………………………………………………………………………...23
2.1. Характеристика производства………………………………………………………….23
2.2. Характеристика источников загрязнения окружающей среды……………………….29
3. Общие принципы организации локального мониторинга на предприятии……………31
4. Разработка программы локального мониторинга………………………………………..34
4.1. Цели и задачи локального мониторинга на предприятии…………………………….34
4.2. Объекты локального мониторинга и определяемые параметры..……………………34
4.3. Обоснование выбора расположения и числа постов наблюдения. Определение перио-дичности наблюдений………………………………………………….………………...35
5. Организация наблюдений по объектам локального мониторинга………………………42
5.1. Выбросы загрязняющих веществ в атмосферный воздух……………………………..42
5.2. Сбросы сточных вод……………………………………………………………………..44
5.3. Поверхностные и подземные воды……………………………………………………..49
5.4. Земли ……………………………………………………………………………………..51
6. Документирование, интерпретация и использование результатов наблюде-ний………………………………………………………………………………………………….54
Заключение…………………………………………………………………………………57
Список использованной литературы……………………………………………………..58
Повышение давления препятствует быстрому отравлению катализатора; частично это происходит вследствие того, что закоксовывание катализатора и чувствительность к отравлению вредными примесями с повышением давления значительно уменьшаются. В результате уменьшается выход водорода, жидких продуктов процесса и содержание в них ароматических углеводородов; одновременно увеличивается выход газов. При снижении давления резко увеличивается скорость закоксовывания катализатора, а следовательно, сокращается paбочий цикл установки, поэтому для промышленной реализации процесса при пониженном давлении с межрегенерационным периодом 6-9 месяцев нужны усовершенствованные платиновые катализаторы риформинга – би- или полиметаллические. Применение биметаллических катализаторов, в первую очередь платинорениевых, медленнее закоксовывающихся и хорошо регенерирующихся, позволило проводить процесс под давлением 1,5-2 МПа с периодической регенерацией. Таким образом, снижение давления позволяет при меньших температурах получать более высокие выходы катализата и водорода, а также увеличить содержание водорода в циркулирующем газе. Проведение риформинга на полиметаллическом катализаторе при 1,5 МПа по сравнению с катализатором АП-64 при 3,5 МПа позволило снизить температуру риформинга на 20 °С, повысить выход катализата на 9 и водорода на 1% (масс.) и одновременно увеличить концентрацию водорода в циркулирующем в системе газе почти на 11% (об.).
С повышением температуры в процессе каталитического риформинга при прочих равных условиях уменьшаются выход стабильного катализата и содержание водорода в циркулирующем водородсодержащем газе, повышаются содержание ароматических углеводородов в катализате и его октановое число, а также отложение кокса на катализаторе. Кроме того, возрастает выход более легких углеводородов – пропана, бутана и изо-бутана (очевидно, вследствие усиления реакций гидрокрекинга углеводородов, как содержащихся в сырье, так и вновь образующихся в процессе риформинга).
Однако с повышением температуры увеличивается и закоксовывание катализатора. Таким образом, температуру каталитического риформинга следует подбирать в сочетании с другими параметрами процесса; следует также обращать внимание на качество сырья и катализатора.
С повышением объемной скорости подачи сырья увеличиваются выход стабильного продукта и содержание водорода в циркулирующем газе, снижается выход водорода, легких углеводородов и, что особенно важно, ароматических углеводородов. Таким образом, ресурсы ароматических углеводородов при каталитическом риформинге снижаются, а выход бензина, хотя и увеличивается, но октановое число его становится меньше; давление насыщенных паров бензина и содержание в нем ароматических углеводородов и фракций, выкипающих до 100 °С, также уменьшаются.
Соотношение циркулирующего водородсодержащего газа и сырья можно регулировать в широких пределах. Нижний предел определяется минимально допустимым количеством газа, подаваемого для поддержания заданного парциального давления водорода; верхний – мощностью газокомпрессорного оборудования. Увеличение соотношения водородсодержащий газ : сырье проявляется в двух противоположных направлениях. С одной стороны, повышение парциального давления водорода подавляет реакции дегидрирования, но с другой стороны, увеличение количества газа, циркулирующего через реактор, уменьшает падение в них температуры; в результате средняя температура катализатора и скорость протекания реакций увеличиваются.
Жесткость процесса обычно оценивают значением октанового числа продукта: чем оно выше, тем жестче режим.
Из рассмотренных факторов наибольшее влияние на результаты риформинга оказывают давление и температура. В процессе работы даже при выдерживании заданного режима и переработке сырья постоянного состава активность катализатора постепенно снижается. Поэтому для получения продуктов нужного качества в намеченных количествах приходится по мере снижения активности катализатора вначале повышать температуру в реакторах, а затем проводить регенерацию катализатора.
Катализаторы, применяемые в процессе риформинга, должны обладать двумя основными функциями: дегидрирующей-гидрирующей и кислотной. Дегидрирующую–гидрирующую функцию в катализаторе обычно выполняют металлы VIII группы Периодической системы элементов Д. И. Менделеева (платина, палладий, никель). Кислотной функцией обладает носитель катализатора – окись алюминия. Кислотными свойствами катализатора определяется его крекирующая и изомеризующая активность. Для усиления кислотной функции катализатора в его состав вводят галоген. В последнее время с этой целью чаще применяют хлор. Катализаторы, сочетающие обе описанные функции (и дегидрирующую, и кислотную), называются бифункциональными. Основными критериями для оценки катализаторов служат: объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. Одним из эффективных способов повышения активности, селективности и стабильности катализаторов является введение в них специальных элементов – промоторов, обеспечивающих этот эффект.
Применение биметаллических
катализаторов позволило
- содержание серы в сырье риформинга не должно превышать 1÷10-4% мас., что требует глубокого гидрооблагораживания сырья в блоке предварительной гидроочистки;
- содержание влаги в циркулирующем газе не должно превышать 2-3÷10-3% мольных;
- пуск установки на
свежем и регенерированном
- для восстановления
Для усиления кислотной функции носителя (Al2O3) используют хлор (в большинстве случаев) или фтор. Их содержание составляет 0,4-2,0% мас.
Риформинг является одним из ведущих процессов нефтепереработки по производству высокооктановых компонентов автобензинов. Доля процесса риформинга в объеме переработки нефти на НПЗ мира составляет в среднем 14%. Товарные бензины, выпускаемые в США, содержат в среднем 35% риформата, в странах Западной Европы - около 50%.
Принципиальная схема установки риформинга (см. рис 2.1.) включает 4 блока:
блок гидроочистки сырья - бензиновых фракций (до содержания серы не более 1 мг/кг);
нагревательно-реакторный блок;
блок сепарации продуктовой смеси;
блок cтабилизации риформата.
Стабилизированное в колонне 4 гидроочищенное сырье в смеси с водородсодержащим газом поступает в нагревательно-реакторный блок риформинга. С целью обеспечения равной конверсии по реакторам и уменьшения количества наиболее дезактивированного катализатора три реактора загружаются катализатором в соотношении 1:2:4.
Перед каждым реактором сырье нагревается в одной из секций трехсекционной печи) из-за суммарного эндотермического эффекта протекающих реакций. Температура в реакторах составляет 490÷510 °С (повышается от реактора к реактору). По мере закоксовывания катализатора приходится постепенно увеличивать температуру, чтобы поддерживать конверсию на прежнем уровне. Давление для основных реакций дегидрирования и дегидроциклизации чем ниже, тем лучше (селективнее процесс). Повышенное давление используется для подавления реакций полимеризации и конденсации (коксования). Как уже отмечалось, для биметаллических катализаторов давление ниже (1,8÷2,0 МПа), чем для используемых ранее платиновых катализаторов (3,0÷3,5 МПа).
Рис. 2.1 Принципиальная схема установки каталитического риформинга для получения высокооктанового бензина на стационарном катализаторе: 1-трубчатая печь; 2-реактор гидроочистки; 3-сепарационная емкость колонны; 4, 8-ректифи-кационная колонна; 5-7-реактор риформинга; 9- холодильник; 10-секция очистки газа; 11 - насос; 12-сепаратор высокого давления; 13-теплообменник; 14-компрессор; 15- абсорбер.
Объемная скорость подачи сырья составляет 1,3÷2,0 ч-1, т.е. 1 м3 сырья на 1 м3 катализатора в час, считая на всю загрузку катализатора.
Кратность циркуляции ВСГ поддерживается на уровне 6÷10 моль/моль сырья (900-1500 м3 ВСГ на 1 м3 сырья). Такая большая кратность нужна для того, чтобы поддерживать в системе высокое парциальное давление водорода и тем самым подавлять побочные реакции уплотнения.
Установка рассчитана на работу на бензине из легкой нефти при среднем давлении в реакционной секции 2,6 МПа и получении риформинг-бензина с ИОЧ 97. Рабочий цикл установки составлял 12 мес между двумя регенерациями катализатора.
Сегодня все большее распространение получает технологическая схема с движущимся слоем катализатора и его непрерывной регенерацией фирм UOP и JFP. Высокая селективность используемых полиметаллических катализаторов и их непрерывная регенерация позволяет проводить процесс в жестком режиме при избыточном давлении в реакторе порядка 0,8-0,9 МПа, что способствует увеличению выхода риформата с октановым числом 100 по исследовательскому методу до 82%.
Технология UOP получила название CCR-платформинг – риформинг с непрерывной регенерацией платинового катализатора. Эти установки более экономичны при снижении рабочего давления. Три реактора (1, 2, 3) расположены друг над другом и связаны между собой системами переточных труб малого диаметра. Шариковый катализатор диаметром 1,6 мм свободно перетекает из реактора в реактор под действием силы тяжести. Из третьего реактора через систему затворов с шаровыми клапанами катализатор поступает в питатель пневмотранспорта и азотом подается в бункер-накопитель регенератора 4.
Рис. 2.2 Технологическая схема установки риформинга.
Регенератор представляет собой аппарат с радиальным вводом потоков реакционных газов, разделенный на 3 технологические зоны: в верхней при мольном содержании кислорода не менее 1% производится выжиг кокса, в среднем при содержании кислорода 10-20% и подаче хлорорганических соединений–окислительное хлорирование катализатора, в нижней зоне катализатор дополнительно прокаливают в токе сухого воздуха. Разобщение зон-гидравлическое. Катализатор проходит все зоны под действием силы тяжести. Из регенератора через систему затворов катализатор поступает в питатель пневмотранспорта и водородсодержащим газом подается в бункер-накопитель, расположенный над реактором риформинга. Газопродуктовая смесь поступает в сепараторы 5,6, колонну стабилизации 7 и далее риформат идет на станцию смешения бензина.
Для разработки системы локального мониторинга на предприятии будем использовать данные, приведенные в задании на курсовую работу:
Источник выброса |
Загрязняющее вещество |
Высота источника, м |
Валовый выброс, т/год |
Эффективность очистки,% |
1 |
2 |
3 |
4 |
5 |
Технологическое оборудование |
Диоксид серы Оксиды азота Сероводород Оксид углерода Углеводороды предельные С10-С15 |
120 |
851 1200 98 325
41 |
- - - -
- |
1 |
2 |
3 |
4 |
5 |
Эстакады налива нефтепродуктов |
Бензин |
20 |
23 |
- |
Факельное хозяйство |
Диоксид серы Оксиды азота Оксиды углерода |
120 |
187 785 1654 |
- |
Резервуары для хранения мазута, нефтепродуктов |
Углеводороды Бензин Керосин |
30 |
12 35 54 |
- |
Концентрацию загрязняющих веществ в приземном слое принимаем равной 0,5 ПДКр.з.
На балансе предприятия имеется собственный отвал технологических отходов общим объемом 10000 м3. На нем складируются следующие отходы:
Наименование отхода |
Класс опасности |
Физическое состояние |
Химический состав отходов |
Нефтешлам |
3 |
Пастообразен |
Нефтепродукты – 5-15%, механические примеси – 50 – 60% |
Отходы от зачистки резервуаров, емкостей и аппаратов |
3 |
Пастообразен |
Окалина до 21,5%, SiO2 до 44%, смола до 15,6% |