Экологические проблемы эксплуатации нефтеперерабатывающих предприятий

Автор: Пользователь скрыл имя, 26 Ноября 2012 в 22:27, дипломная работа

Краткое описание

Цель дипломной работы – изучение экологических проблем эксплуатации нефтеперерабатывающих предприятий.
Для реализации цели дипломной работы ставились следующие задачи:
- охарактеризовать процессы переработки нефти, сопровождающиеся загрязнением окружающей среды;
- изучить воздействие нефтеперерабатывающих предприятий на окружающую среду: атмосферу, гидросферу и литосферу;
- предложить меры по решению экологических проблем эксплуатации нефтеперерабатывающих предприятий;
- выявить правовые основы и методы обеспечения природоохранного законодательства в области нефтепереработки;
- рассчитать плату за выбросы загрязняющих веществ в атмосферу и за сбросы загрязняющих веществ в водоемы от нефтеперерабатывающих предприятий.

Оглавление

Список сокращений
Введение
1 Характеристика процессов переработки нефти, сопровождающихся загрязнением окружающей среды
1.1 Состав и свойства нефти
1.2 Группы нефтепродуктов, получаемые при переработке нефти
1.3 Общая схема переработки нефти
1.3.1 Первичная переработка нефти
1.3.2 Вторичные процессы нефтепереработки
2 Воздействие нефтеперерабатывающих предприятий на окружающую среду
2.1 Влияние нефтеперерабатывающих предприятий на атмосферу
2.1.1Основные источники загрязнения атмосферы на нефтеперерабатывающих предприятиях
2.1.2 Установки каталитического крекинга как загрязнители атмосферы
2.1.3 Последствия воздействия нефтеперерабатывающих предприятий на атмосферу
2.2 Воздействие сточных вод нефтеперерабатывающих предприятий на гидросферу
2.3 Загрязнение литосферы нефтеперерабатывающими предприятиями
3 Меры по решению экологических проблем эксплуатации нефтеперерабатывающих предприятий
3.1 Мероприятия по снижению атмосферных выбросов от блока каталитического крекинга
3.1.1 Снижение выбросов аэрозолей от установок каталитического крекинга в атмосферу
3.1.2 Снижение выбросов оксида углерода от установок каталитического крекинга в атмосферу
3.1.3 Снижение выбросов оксидов серы и сероводорода от установок каталитического крекинга в атмосферу
3.1.4 Снижение выбросов оксидов азота от установок каталитического крекинга в атмосферу
3.1.5 Снижение выбросов углеводородов от установок каталитического крекинга в атмосферу
3.2 Рациональные схемы водоснабжения и канализации на нефтеперерабатывающих предприятиях
3.3 Снижение экологической нагрузки нефтеперерабатывающих предприятий на литосферу
4 Правовые основы и методы обеспечения природоохранного законодательства в области нефтепереработки
5 Расчет выбросов загрязняющих веществ в атмосферу от резервуаров нефтеперерабатывающих предприятий
5.1 Алгоритм расчета выбросов загрязняющих веществ в атмосферу от резервуаров нефтеперерабатывающих предприятий
5.2 Исходные данные для расчета выбросов паров нефтей и бензинов в атмосферу от резервуаров нефтеперерабатывающего предприятия
5.3 Расчет валовых выбросов загрязняющих веществ от резервуаров хранения автомобильного бензина
5.4 Расчет валовых выбросов загрязняющих веществ от резервуаров хранения технического керосина
6 Расчет платы за выбросы загрязняющих веществ в атмосферу от нефтеперерабатывающих предприятий
6.1 Алгоритм расчета платы за выбросы загрязняющих веществ от нефтеперерабатывающих предприятий
атмосферу от нефтеперерабатывающих предприятий
6.2 Исходные данные для расчета платы за выбросы загрязняющих веществ в атмосферу от нефтеперерабатывающих предприятий
6.3 Расчет платы за выбросы загрязняющих веществ в атмосферу от нефтеперерабатывающих предприятий
7 Расчет платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты от нефтеперерабатывающих предприятий
7.1 Алгоритм расчета платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты от нефтеперерабатывающих предприятий
7.2 Исходные данные для расчета платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты от нефтеперерабатывающих предприятий
7.3 Расчет платы за сбросы загрязняющих веществ в поверхностные и подземные водные объекты от нефтеперерабатывающих предприятий
Выводы
Список использованных источников

Файлы: 1 файл

Экологические проблемы эксплуатации нефтеперерабатывающих предприятий.doc

— 1.19 Мб (Скачать)

6) Гидрокрекинг

Гидрокрекинг – это  каталитический процесс, протекающий  в среде водорода при температуре  до 400ºС и давлении до 32 МПа. Этот процесс в зависимости от исходного сырья позволяет получать широкую гамму продуктов: от сжиженных газов до масел и нефтяных остатков с низким содержанием серы.

7) Гидроочистка

Гидроочистка – это  процесс, протекающий в среде  водорода в присутствии катализатора при температуре 325-425 ºС, давлении 3-7 МПа.

При этом процессе происходит деструкция сераорганических, кислород- и азоторганических соединений до сероводорода, воды и аммиака, предельных и ароматических углеводородов. При этом получается цвет, запах нефтепродуктов и снижается содержание серы до заданных норм.

Вторичные процессы переработки  нефти поставляют в окружающую среду  основное количество загрязнителей.

Серосодержащие газы – диоксид серы и сероводород  – отходящие газы регенерации  катализаторов на установках крекинга. Кроме того, источниками диоксида серы являются дымовые трубы печей, факельные стояки. Сероводород поступает в атмосферу также с установок гидроочистки и термокрекинга [2].

Технологические печи, факельные  стояки выбрасывают в атмосферу оксиды азота, диоксид и монооксид углерода, твердые вещества.

Источниками попадания углеводородов в атмосферу и воду являются технологические установки (выбросы и утечки за счет неплотностей технологического оборудования, трубопроводной аппаратуры, сальников насосов, а также из рабочих клапанов при аварийных ситуациях, вентиляционные выбросы из рабочих помещений), системы оборотного водоснабжения (испарение углеводородов в нефтеотделителях и градирнях), технологические конденсаты.

Отработавшие катализаторы, зола, пыль, кислые гудроны представляют собой отходы вторичных процессов нефтепереработки.

Рассмотренные процессы переработки нефти загрязняют окружающую среду. В этой связи необходимым является изучение воздействия нефтеперерабатывающих предприятий на отдельные оболочки биосферы.

 

 

2 Воздействие нефтеперерабатывающих

предприятий на окружающую среду

 

Нефтеперерабатывающие предприятия оказывают отрицательное  воздействие на все оболочки биосферы: воздушную, водную и твердую. Выделяющиеся в процессе переработки нефти выбросы влияют на состояние атмосферы; сточные воды попадают в природные воды и загрязняют гидросферу Земли; отходы производства, шламы прямо или косвенно наносят ущерб почвенному покрову.

 

2.1 Влияние  нефтеперерабатывающих предприятий  на атмосферу

 

Необходимость и значимость изучения воздушного бассейна предприятий  по переработке нефти связана с насыщенностью источниками выделения и опасностью выбрасываемых в атмосферу вредных веществ [1].

 

2.1.1 Основные источники загрязнения атмосферы на нефтеперерабатывающих предприятиях

Основными вредными веществами, выбрасываемыми в атмосферу на нефтеперерабатывающих  предприятиях, являются углеводороды, сернистый газ, сероводород, окись  углерода, аммиак, фенол, окислы азота и т.д. К числу наиболее крупных источников загрязнения атмосферы относятся:

- резервуары, в которых  хранятся нефть, нефтепродукты,  различные токсичные легкокипящие жидкости;

- очистные сооружения; некоторые технологические установки  (АВТ, каталитический крекинг, производство битумов и др.);

- факельные системы.

В таблице 1 приводятся данные о доле различных источников выбросов в атмосферу в общей величине выброса, полученные в результате обследований и паспортизации источников выбросов [3].

Таблица 1 – Распределение выбросов вредных веществ в атмосферу по основным источникам от общего количества выбросов [3]

Источники загрязнения  атмосферы

Компоненты выбросов, %

Углеводороды

СО

SO2

NO2

H2S

Твердые вещества

Резервуары

40,7

-

-

-

9,6

-

Градирни и нефтеотделители

14,6

-

-

-

9,5

-

Очистные сооружения

12,4

-

-

-

20,3

-

Сливно-наливные эстакады

3,1

-

-

-

-

-

Дымовые трубы

-

43,4

56,9

72,6

-

-

Продолжение таблицы 1

Факельные стояки

-

4,8

19,9

5,4

-

4,7

Вакуумсоздающие системы  АВТ

3,5

-

-

-

44,6

-

Вентиляционные системы

2,0

-

-

-

2,8

0,7

Регенераторы установок  каталитического крекинга

-

30,7

2,5

-

-

23,3

Газомоторные компрессоры

-

10,5

-

14,7

-

-

Узлы рассева и пневмотранспорта катализаторов

-

-

-

-

-

29,5

Негерметичность оборудования

19,4

-

-

-

-

-

Прочие источники

4,3

10,6

20,7

7,3

13,2

41,8


 

2.1.2 Установки каталитического крекинга как загрязнители атмосферы

Установки каталитического  крекинга относятся к одним из главных загрязнителей в нефтеперерабатывающих предприятиях.

Основным источником загрязнения при каталитическом крекинге является регенератор катализатора [18].

Для блока каталитического  крекинга в основном используют тяжёлые  дистилляты первичной переработки нефти, а это сырье более обогащено сернистыми и азотистыми соединениями, так же имеет в своём составе тяжёлые металлы в виде металлоорганики. Так как при самом крекинге идут процессы расщепления более сложных молекул углеводородов в более простые (в основном), то процессу расщепления подвергаются так же и молекулы содержащие азот, серу и металлы, превращая их в более простые соединения.

При переработке  утяжеленного сырья катализатор  может отравляться этими азотистыми и металлоорганическими соединениями. Отравление металлами выражается повышением коксоотложений на катализаторе и увеличением доли водорода в газах крекинга. Оба эти явления объясняются каталитическим действием металлов на реакции дегидрирования, протекающие на поверхности катализатора. Азотистые соединения значительно снижают выход бензина. Отмечена большая стабильность цеолитов к металлоорганическим и особенно к азотистым соединениям по сравнению с аморфными алюмосиликатами.

По мере увеличения времени контакта сырья с катализатором  активность катализатора падает, так как его поверхность покрывается смолисто-коксовыми отложениями. Катализатор приобретает интенсивную темную окраску уже после мгновенного контакта с сырьем. В результате на поверхности катализатора образуются все более обеднённые водородом соединения, а жидкие и газообразные продукты все более обогащаются водородом. За счет обеднения водородом адсорбированные продукты уплотнения переходят в кокс, дезактивирующий катализатор.

Отработанный  катализатор стекает в регенератор. Для восстановления активности эти отложения (кокс) выжигают посредством контакта горячего катализатора с потоком воздуха. Затем катализатор рециркулируется для повторного использования. Чем выше температура регенерации, тем быстрее протекает этот процесс. В настоящее время часто стали использоваться аппараты каталитического крекинга, где тепло необходимое для протекания процесса получается путём сгорания кокса, отложившегося на катализаторе, в регенераторе. Поэтому для проведения технологического процесса важным параметром регенерации является соотношение между количеством CO и CO2 в продуктах сгорания кокса. То есть в регенераторах такого типа кокс сознательно не дожигается до CO2, а дожигается лишь до определённого соотношения для поддержания необходимой температуры. Повышение температуры сгорания кокса в регенераторах современных установок привело к некоторому снижению доли CO, но не позволило полностью его дожигать. Поэтому дымовые газы выходящие из регенератора содержат большое количество CO.

При процессе обжига катализатора в регенераторе на нём  происходит сгорание не только кокса, но и отложившихся на нём соединений серы, азота, поэтому выпускать дымовые газы сразу в атмосферу нельзя. Раньше отходящий газ из регенератора просто пропускали через внутренний циклон для отделения пылевидного катализатора, далее он поступал в дожигатель CO, потом в атмосферу, часто через электрофильтр. При такой очистке в атмосферу попадало большое количество оксидов серы и азота. Заметим, что при использовании высокотемпературной регенерации отпадает нужда в СО – дожигателе и радикально изменяется характер выбросов при каталитическом крекинге в псевдоожиженном слое. Но сложность проведения процесса высокотемпературной регенерации заключается в том, что катализатор имеет свойство спекаться при высоких температурах [15].

Следует отметить также ещё один источник выбросов дымовых газов в атмосферу – это печь, через которую первоначально проходит сырьё и где нагревается до необходимой температуры процесса. Эти технологические нагреватели работают на наиболее доступном и экономичном топливе, обычно представляющем собой смесь поставляемого естественного газа, топливного газа, получаемого на заводе, и топливной нефти. В качестве последней обычно используется остаточная топливная нефть. Обычно половина или более потребности в тепле покрывается топливным газом, производимым на заводе.

Выбросы из печей  зависят от типа топлива, но типичные объёмы выбросов приведены в таблице 2.

 

Таблица 2 - Типичные объёмы выбросов загрязняющих веществ в атмосферу из печей [3]

Загрязнение

Объёмы выбросов при сгорании топлива

Природный газ,

мкг/м3

Топливная нефть,

кг/м3

Углеводороды (в  пересчёте на CH4)

Аэрозоли

SOx (в пересчёте на SO2)

CO

NOx (в пересчёте на NO2)

48,4

81 – 243

9,7

273

193 – 209

0,205

32

1,025

12,018


 

2.1.3 Последствия  воздействия нефтеперерабатывающих предприятий на атмосферу

Мощные предприятия  нефтепереработки имеют стабильно  высокое содержание загрязняющих веществ вблизи источника, очень медленно снижающееся по мере удаления от него. Наиболее опасная обстановка возникает в аварийных ситуациях.

В результате деятельности нефтеперерабатывающих предприятий  в атмосферу осуществляется выброс в больших количествах углеводородов, угарного газа, углекислого газа, различных сернистых соединений, оксидов азота, твердых веществ.

Эмиссия в атмосферу  газов: СО2, СО, СН4, С2Н6, оксидов азота  – приводит к появлению «парникового эффекта». Таким образом, нефтеперерабатывающие предприятия входят в число виновников глобального потепления климата [4].

Выбросы оксидов азота, углеводородов способствуют образованию  тропосферного озона в результате фотохимических реакций. Тропосферный озон является одним из парниковых газов. Кроме того, образующийся фотохимический смог является очень токсичным.

Под действием выбросов происходит разрушение стратосферного озона. Стратосферный озон поглощает  жесткое ультрафиолетовое излучение, которое вредно для всего живого. Увеличивающаяся озоновая дыра ведет к онкологическим заболеваниям, развитию катаракты, подавляет фотосинтез растений.

Еще одна проблема, связанная  с атмосферными выбросами, - кислотные  дожди. Нефтеперерабатывающие предприятия, несомненно, осуществляют свой вклад в усложнение этой проблемы. Это связано с тем, что источниками кислотных дождей служат газы, содержащие серу и азот; наиболее важные из них: SO2, NOx, H2S.

Таким образом, воздействие  нефтеперерабатывающих предприятий  на атмосферу является одной из причин глобальных экологических проблем.

 

2.2 Воздействие сточных вод нефтеперерабатывающих предприятий на гидросферу

 

Состав сточных вод  нефтеперерабатывающих предприятий различных профилей по основным показателям отличается незначительно. Концентрация нефти, взвесей и БПКполн и другие показатели, находятся в пределах, указанных в таблице 3.

Количество сбросных вод в расчете на 1 т перерабатываемой нефти может достигать 70-100 м3. Однако большая их часть (90-95%) пребывает в обороте, так как проходит соответствующую очистку. Поэтому количество собственно сточных вод на предприятиях составляет обычно 1,6-3 м3 на 1 т нефти [2].

Сточные воды НПП отводят по двум системам канализации. В первую систему включают маломинерализованные стоки и дождевые воды. После очистки эти сточные воды возвращаются для повторного использования. Избыток воды (во время ливней) направляют в аварийные накопители и после очистки сбрасывают в водоем.

Во вторую систему  канализации входят несколько (от 5 до 7) сетей, транспортирующих сточные воды от отдельных цехов и установок. Эти воды сильно минерализованы, загрязнены токсичными веществами и в обороте не используются. При необходимости они могут подвергаться локальной очистке от специфических загрязнений.

 

Таблица 3 - Состав сточных вод

нефтеперерабатывающих предприятий [2]

Информация о работе Экологические проблемы эксплуатации нефтеперерабатывающих предприятий