Автор: Пользователь скрыл имя, 25 Марта 2011 в 17:08, курсовая работа
В работе рассмотрено производство керамического кирпича основные характеристики, технологический расчет тунельной печи.
1.1 Выбор и обоснование метода производства
Механическая обработка глинистых материалов оказывает существенное влияние на качество керамического кирпича. Поэтому при устройстве оборудования для переработки керамических масс следует выбирать машины в точном соответствии с отличительными свойствами сырьевых материалов и требованиями, предъявляемыми к готовым изделиям.
Вопросы
равномерного увлажнения и тщательного
перемешивания массы с
Сушка является очень ответственной операцией, нарушение ее режима может привести к растрескиванию изделий. Основой сушки должен быть режим, обеспечивающий равномерное удаление влаги по всей толще сырца, - при различной влажности слоев создаются усадочные напряжения, вызывающие трещиноватость и деформацию. Особенно опасно образование поверхностной сухой корки за счет интенсивного высыхания поверхности. При сушке изделий стремятся создать оптимальный режим, то есть режим, при котором получают качественные изделия без трещин в минимальные сроки при возможно меньших затратах тепла и электроэнергии.
Для сушки кирпича-сырца лучше выбирать противоточно-прямоточные туннельные сушилки. Противоточными называются, так как теплоноситель движется навстречу к изделию. Прямоточными называются, так как при использовании рециркуляционных вентиляторов теплоноситель движется по направлению движения изделия. Для экономии электроэнергии сушилки можно использовать только как противоточные (не включая рециркуляционных вентиляторов). Но недостаток сушильных мощностей приводит к увеличению трещиноватости изделий при форсированных режимах сушки или повышению остаточной влажности сырца после сушки, что неизбежно приведет к росту брака при обжиге. Итак, входящие в туннель горячие газы омывают прежде всего почти высохший сырец, который может отдавать остатки влаги с любой скоростью, без опасности трещинообразования. Несколько охлажденные газы, частично уже насыщенные влагой, продвигаясь по туннелю навстречу вагонеткам с сырцом, омывают сырец, успевший немного подсохнуть. Наконец, газы, потерявшие значительную часть своего тепла и насыщенные влагой, достигают свежеотформованного сырца. Это создает благоприятные, «мягкие» условия сушки.
Туннельные сушила, по сравнению с камерными, являются более механизированными, и сушка кирпича производится почти без регулировки при установленном режиме. И, наконец, в отличии от камерных сушил, в туннельных сушилах создаются более благоприятные, мягкие условия для сушки: сформованный кирпич-сырец попадает в среду влажного с небольшой температурой теплоносителя. По мере высыхания кирпича-сырца и продвижения вагонеток к выгрузочному концу кирпич встречает теплоноситель с более высокой температурой и менее насыщенной влагой. Сроки сушки в туннельных сушилках меньше, однако все это достигается подбором температуры, влажности, скорости и количества теплоносителя.
Однако туннельные сушилки обладают рядом недостатков, основными из которых являются: увеличенная металлоемкость, требуют стабильной загрузки и выгрузки в течение суток (которая невозможна при односменной работе); обеспечивает выпуск качественной продукции только при равенстве температур загружаемого сырца и мокрого термометра психрометра отработанного теплоносителя сушилки.
В технологии керамического кирпича обжиг является завершающей и наиболее ответственной стадией его изготовления. Процесс обжига керамического кирпича заключается в высокотемпературной обработке сформованного и высушенного кирпича-сырца при заданных температурах в определенной газовой среде. Под влиянием теплового воздействия в керамических массах происходит ряд физико-химических процессов, в результате которых формуются наиболее важные свойства и структура кирпича, определяющие его техническую ценность - прочность, плотность, морозостойкость и др.
Режим обжига представляет собой комплекс взаимосвязанных факторов: скорости подъема температуры, конечной температуры обжига, длительности выдержки при конечной температуре, характера газовой среды и скорости охлаждения. В процессе нагрева при различных температурах в материале керамических изделий происходит ряд сложных физико-химических явлений, вызывающих изменение его свойств.
В
процессе обжига могут использоваться
различные виды печей, однако в современной
индустрии производства кирпича, безусловно,
основное положение занимают туннельные
печи. Основными преимуществами работы
на туннельных печах являются улучшение
условий труда рабочих и экономия топлива.
Невысокий расход топлива объясняется
тем, что в туннельной печи зоны неподвижны
и, будучи однажды нагреты, сохраняют свою
температуру и не требуют попеременного
нагревания и охлаждения, как это имеет
место в кольцевых печах. Серьезным преимуществом
туннельной печи является возможность
автоматизации управления тепловым процессом.
Производительность печи 25 млн.шт. условного
кирпича в год. Печь представляет собой
прямой канал образованный стенами и плоским
покрытием из сборных элементов жаростойкого
бетона.
1.2 Проектные предложения
Основной загрязняющий фактор в воздействии силикатной промышленности на окружающую среду – это пыль, возникающая при приготовлении сырьевых смесей, дозировании, перемешивании, тонком измельчении и особенно при сушке и обжиге сыпучих материалов. Пыль силикатных производств имеет высокую дисперсность (количество частиц менее 5 мкм доходит до 60%) и содержит значительное количество свободного оксида кремния.
В то же время, например, при производстве кирпича пылевыделение в смесеприготовительном отделении в 12-15 раз превышает допустимые нормы. Даже на участках погрузки и разгрузки кирпича запыленность в 2-3 раза выше допустимых концентраций. Причины повышенного загрязнения воздуха – отсутствии надежной герметизации технологического оборудования, местных отсосов, вакуумной пылеуборки, эффективной общеобменной вентиляции. На мой взгляд, нужно беречь здоровье рабочего персонала и устанавливать как можно больше пылеуловителей, принцип действия которых основан на использовании гравитационных, инерционных и электростатических сил. Такие, например, как пылеосадительные камеры (грубая очистка), сухие и мокрые циклонные аппараты (первая ступень очистки), тканевые рукавные фильтры и электрофильтры (окончательная очистка).
Теперь
что касается изготовления кирпича,
известно каждому, что керамический
кирпич высокого качества может быть
получен только при полном разрушении
исходной структуры глин, тонком измельчении
и тщательном перемешивании расходных
материалов до получения однородной массы.
Как мне кажется, в технологическую схему
изготовления керамического кирпича следует
добавить еще и бегуны для более тщательного
измельчения глины. Хотя на заводе выбран
самый лучший способ приготовления глиняных
масс.
2.1 Теоретические основы процессов
Механическая обработка глинистых материалов оказывает существенное влияние на качество керамического кирпича. Поэтому при устройстве оборудования для переработки керамических масс следует выбирать машины в точном соответствии с отличительными свойствами сырьевых материалов и требованиями, предъявляемыми к готовым изделиям. Чтобы получить изделия требуемого качества, необходимо разрушить ее природную структуру, получить пластичную массу, однородную по вещественному составу, влажности и структуре, а так же придать массе надлежащие формовочные свойства.
Процесс измельчения материалов является весьма сложной операцией и зависит от их однородности, плотности, вязкости, твердости, формы кусков, влажности и т. д.
Процесс формования можно разделить на три операции: получение из керамической массы бруса требуемого поперечного сечения, разрезка сплошного глиняного бруса на части, перекладка сформованного кирпича-сырца на транспортные устройства для направления в сушилки.
Кирпич, изготовленный пластическим прессованием, содержит влагу, которая должна быть удалена, чтобы придать кирпичу механическую прочность и подготовить к обжигу. Сушкой называется процесс удаления влаги из материалов путем ее испарения.
Сушка является очень ответственной операцией, нарушение ее режима может привести к растрескиванию изделий. Основой сушки должен быть режим, обеспечивающий равномерное удаление влаги по всей толще сырца, - при различной влажности слоев создаются усадочные напряжения, вызывающие трещиноватость и деформацию. Особенно опасно образование поверхностной сухой корки за счет интенсивного высыхания поверхности. При сушке изделий стремятся создать оптимальный режим, то есть режим, при котором получают качественные изделия без трещин в минимальные сроки при возможно меньших затратах тепла и электроэнергии. Сушку кирпича производят конвективным методом, то есть методом, при котором влага испаряется в следствие теплового обмена между изделиями и теплоносителем. В качестве теплоносителя используется горячий воздух с зоны охлаждения печи. Горячий воздух является одновременно и теплоносителем, и влагопоглотителем, так как передает кирпичу-сырцу тепло и поглощает его влагу.
Режим обжига представляет собой комплекс взаимосвязанных факторов: скорости подъема температуры, конечной температуры обжига, длительности выдержки при конечной температуре, характера газовой среды и скорости охлаждения. В процессе нагрева при различных температурах в материале керамических изделий происходит ряд сложных физико-химических явлений, вызывающих изменение его свойств.
В интервале температур 0-150°С происходит досушка - удаление физически связанной воды. Давление водяных паров внутри нагреваемого кирпича достигает значительных величин уже при температуре 70°С и возрастает с повышением температуры.
Удаление химически связанной воды (дегидратация) происходит в зоне обжига в интервале температур 150-8000С. В начале зоны обжига при нагревании сырца до 300-4000С удаляется химически связанная вода из гипса, водных оксидов железа и других соединений.
При нагреве до 500-6000С начинается разрушение каолинита (Аl2О3* Si02*2Н20).В этот же период выгорают органические примеси. В результате разложения каолинита и удаления из сырца химически связанной воды происходит полная потеря пластичности.
Аl2О3* Si02*2Н20 = Аl2SiО5 + 2Н20
При нагреве до 600-7000С из углекислого кальция СаСО3 и магния MgCO3, если они содержатся в глине, удаляется углекислый газ (С02). Реакция происходит спокойно, при этом объем изделия не уменьшается и несколько увеличивается пористость кирпича, которая способствует беспрепятственному удалению воды и летучей части органических веществ. Этот период нагрева, включая период дегидратации и модификационных изменений кварца, является практически безопасным и его можно производить с высокой скоростью (100-2000С/ч).
СаСО3 = CaО + СО2; MgCO3 = MgО + СО2
При нагревании свыше 700ºС начинается уплотнение черепка изделия, его спекание и изменение цвета. Процесс спекания состоит в том, что некоторые минералы, находящиеся в глине, под действием высокой температуры вступают в химические взаимодействия друг с другом, образуя легкоплавкие соединения. К таким минералам в первую очередь относится кремнезем (Si02), вступающий в химические соединения с щелочами (К20, Na20, CaO, MgO) и оксидами железа (FeO, Fe203).
При этом образуется стекловидное вещество, которое частично заполняет пустоты (поры) в кирпиче и цементирует частицы других минералов. Следовательно, механическая прочность кирпича зависит от количества размягченной стекловидной массы, получающейся при обжиге. В зависимости от химического состава сырья температура обжига кирпича колеблется между 950 и 1100ºС. Подъем температуры следует прекращать на этапе, обеспечивающем появление минимально необходимого количества жидкой фазы для образования спаек и связок между частицами глинообразующих минералов.
Этот
период нагрева, связанный с разрушением
кристаллической решетки
После
взвара следует выдержка обожженного
кирпича при высокой