Статистические методы анализа динамики численности работников

Автор: Пользователь скрыл имя, 12 Октября 2013 в 21:02, курсовая работа

Краткое описание

Статистическая грамотность является неотъемлемой составной частью профессиональной подготовки каждого менеджера, экономиста, финансиста, социолога, политолога, а также любого специалиста, имеющего дело с анализом массовых явлений, будь то социально-общественные, экономические, технические, научные и другие. Работа этих групп специалистов неизбежно связана со сбором, разработкой и анализом данных статистического (массового) характера.

Оглавление

Введение
I. Теоретическая часть
1 Понятие статистики трудовых ресурсов и её задачи
2 Показатели численности и движения трудовых ресурсов
3 Понятие о рядах динамики
4 Правила построения рядов динамики
5 Показатели анализа ряда динамики
6 Методы анализа основной тенденции развития в рядах динамики
7 Понятие корреляционной связи
8 Экстраполяция в рядах динамики и прогнозирование
II. Практическая часть
III. Аналитическая часть
Заключение
Список использованной литературы

Файлы: 1 файл

статистика численности работников.doc

— 1.69 Мб (Скачать)

Если ряд динамики не содержит ярко выраженной тенденции  в развитии, то индексы сезонности вычисляются непосредственно по эмпирическим данным без их предварительного выравнивания.

Для каждого месяца рассчитывается средняя величина уровня, например за три года (уt), затем вычисляется среднемесячный уровень для всего ряда у. После чего определяется показатель сезонной волны — индекс сезонности Is как процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда, %:

                        yi


Is =       y     * 100


где   yt - средняя для каждого месяца минимум за три года;


y - среднемесячный уровень для всего ряда.


 

Для наглядного примера можно привести аналитическую часть курсовой работы, задание 4

 

8 Экстраполяция в рядах динамики и прогнозирование

 

Необходимым условием регулирования  рыночных отношений является составление  надежных прогнозов развития социально-экономических явлений.

Выявление и характеристика трендов и моделей взаимосвязи  создают базу для прогнозирования, т.е. для определения ориентировочных  размеров явлений в будущем. Для  этого используют метод экстраполяции.

Под экстраполяцией понимают нахождение уровней за пределами изучаемого ряда, т.е. продление в будущее тенденции, наблюдавшейся в прошлом (перспективная экстраполяция). Поскольку в действительности тенденция развития не остается неизменной, то данные, получаемые путем экстраполяции ряда, следует рассматривать как вероятностные оценки.

Экстраполяцию рядов  динамики осуществляют различными способами, например, экстраполируют ряды динамики выравниванием по аналитическим  формулам. Зная уравнение для теоретических  уровней и подставляя в него значения t за пределами исследованного ряда, рассчитывают для t вероятностные ŷt.

На практике результат  экстраполяции прогнозируемых явлений  обычно получают не точечными (дискретными), а интервальными оценками.

Для определения границ интервалов используют формулу:

 

ŷt + tαSŷt

 

 где tα— коэффициент  доверия по распределению Стьюдента;

 

Sŷt  = √ Σ(yi-ŷt)²/(n-m)

 

остаточное среднее  квадратическое отклонение от тренда, скорректированное по числу-степеней свободы* (n-m ); n — число уровней ряда динамики; т — число параметров адекватной модели тренда (для уравнения прямой m = 2).

Вероятностные   границы   интервала   прогнозируемого явления:

( ŷttαSŷt ) ≤ yпр ≤ ( ŷt+tαSŷt )

Нужно иметь в виду, что экстраполяция в рядах  динамики носит не только приближённый, но и условный характер.

Поэтому её следует рассматривать  как предварительный этап в разработке прогнозов. Для составления прогноза должна быть привлечена дополнительная информация, не содержащаяся в самом  динамическом ряду.

 

2. Практическая  часть

 

Задание 1

По исходным данным таблицы 1:

  1. Постройте статистический ряд распределения организаций по признаку среднесписочная численность работников, образовав пять групп с равными интервалами.
  2. Постройте графики полученного ряда распределения. Графически определите значения моды и медианы.
  3. Рассчитайте характеристики ряда распределения: среднюю арифметическую, среднее квадратическое отклонение, коэффициент вариации.
  4. Вычислите среднюю арифметическую по исходным данным (таблица 1), сравните его с аналогичным показателем, рассчитанным в п. 3 настоящего задания. Объяснить причину их расхождения.

Сделать выводы по результатам  выполнения задания.

 

Задание 2

По исходным данным таблицы 1:

  1. Установите наличие и характер связи между признаками среднегодовая стоимость основных производственных фондов и среднесписочная численность работников, образовав пять групп с равными интервалами по обоим признакам, методами:

- аналитической группировки;

- корреляционной таблицы.

  1. Измерите тесноту корреляционной связи между названными признаками с использованием коэффициента детерминации и эмпирического корреляционного отношения. Сделайте выводы.

 

Таблица 1

 

п/п

Среднеспис. численность

чел.(У)

Стоимость ОПФ

млн.руб.(Х)

1

162

34,714

2

156

24,375

3

179

41,554

4

194

50,212

5

165

38,347

6

158

27,408

7

220

60,923

8

190

47,172

9

163

37,957

10

159

30,210

11

167

38,562

12

205

52,500

13

187

45,674

14

161

34,388

15

120

16,000

16

162

34,845

17

188

46,428

18

164

38,318

19

192

47,590

20

130

19,362

21

159

31,176

22

162

36,985

23

193

48,414

24

158

28,727

25

168

39,404

26

208

55,250

27

166

38,378

28

207

55,476

29

161

34,522

30

186

44,839


 

 

Задание 3

По результатам выполнения задания 1 с вероятностью 0,954 определите:

  1. Ошибку выборки средней численности работников и границы, в которых будет находиться средняя численность работников в генеральной совокупности.
  2. Ошибку выборки доли организаций со среднесписочной численностью работников 180 чел. и более и границы, в которых будет находиться генеральная доля.

Задание 4

Имеются следующие данные о внутригодовой динамике численности работников организации по кварталам за три года, чел.:

Кварталы

2000

2001

2002

I

150

145

140

II

138

124

112

III

144

130

124

IV

152

150

148


 

Проведите анализ внутригодовой  динамики численности работников организации, для чего:

  1. Определите индексы сезонности методом постоянной средней.
  2. Изобразите на графике сезонную волну изменения численности работников. Сделайте выводы.
  3. Осуществите прогноз численности работников организации на 2003 г. по кварталам на основе рассчитанных индексов сезонности при условии, что среднегодовая численность работников в прогнозируемом году составит 160 человек.

 

 

2.1. Исследование структуры  совокупности

 

Для построения ряда распределения  необходимо определить признак -  среднесписочная численность работников (таблица 2.1.).

Таблица 2.1.: Исходные данные

п/п

Среднеспис. численность

чел.(У)

1

162

2

156

3

179

4

194

5

165

6

158

7

220

8

190

9

163

10

159

11

167

12

205

13

187

14

161

15

120

16

162

17

188

18

164

19

192

20

130

21

159

22

162

23

193

24

158

25

168

26

208

27

166

28

207

29

161

30

186


 

Таблица 2.2.: Отсортированные данные

п/п

Среднеспис. численность

чел.(У)

1

120

2

130

3

156

4

158

5

158

6

159

7

159

8

161

9

161

10

162

11

162

12

162

13

163

14

164

15

165

16

166

17

167

18

168

19

179

20

186

21

187

22

188

23

190

24

192

25

193

26

194

27

205

28

207

29

208

30

220


 

Ряд распределения – это группировка, представляющая собой распределение  численности единиц совокупности по значению какого-либо признака, в настоящем случае по признаку – среднесписочная численность работников. Если ряд построен по количественному признаку, его называют вариационным. При построении вариационного ряда с равными интервалами определяют число групп (n) и величину интервала (h). По условию задачи необходимо образовать пять групп (n=5). Величина равного интервала рассчитывается по формуле:

,

где ymax и ymin – максимальное и минимальное значения признака.

 чел.

Величина интервала равна 20,0. Отсюда путем прибавления величины интервала к минимальному уровню признака в группе получим следующие группы организаций по среднесписочной численности  (таблица 2.3.).

Таблица 2.3.

интервала

Группа организаций

Число п/п

в абсолютном выражении

в относительном выражении

1

120 - 140

2

6,7%

2

140 - 160

5

16,7%

3

160 - 180

12

40,0%

4

180 - 200

7

23,3%

5

200 - 220

4

13,3%

Итого

 

30

100,0%


 

Данные группировки показывают, что 63,3 % организаций имеют среднесписочную численность работников  менее 180 чел.

Мода (Мо) – это значение случайной  величины, встречающееся с наибольшей вероятностью в дискретном вариационном ряду – это вариант, имеющий наибольшую частоту. В интервальном вариационном ряду мода вычисляется по формуле:

,

где y0 – нижняя граница модального интервала;

h – размер модального интервала;

fMo – частота модального интервала;

fMo-1 – частота интервала, стоящего перед модальной частотой;

fMo+1 – частота интервала, стоящего после модальной частоты.

Отсюда: чел.

Графическое нахождение моды:

 

Медиана (Ме) – это величина признака, который находится в середине ранжированного ряда, то есть расположенного в порядке возрастания или  убывания.

Для интервального вариационного  ряда Ме рассчитывается по формуле: ,

где y0 – нижняя граница медианного интервала;

h – размер медианного интервала;

- половина от общего числа  наблюдений;

SMe-1 – сумма наблюдений, накопленная до начала медианного интервала;

fMe – частота медианного интервала.

Определяем медианный интервал, в котором находится порядковый номер медианы (n).

В графе «Сумма накопленных наблюдений»  таблицы 2.4. значение 15 соответствует  интервалу №3, то есть 160 – 180. Это и есть медианный интервал, в котором находится медиана.

Информация о работе Статистические методы анализа динамики численности работников