Автор: Пользователь скрыл имя, 12 Октября 2013 в 21:02, курсовая работа
Статистическая грамотность является неотъемлемой составной частью профессиональной подготовки каждого менеджера, экономиста, финансиста, социолога, политолога, а также любого специалиста, имеющего дело с анализом массовых явлений, будь то социально-общественные, экономические, технические, научные и другие. Работа этих групп специалистов неизбежно связана со сбором, разработкой и анализом данных статистического (массового) характера.
Введение
I. Теоретическая часть
1 Понятие статистики трудовых ресурсов и её задачи
2 Показатели численности и движения трудовых ресурсов
3 Понятие о рядах динамики
4 Правила построения рядов динамики
5 Показатели анализа ряда динамики
6 Методы анализа основной тенденции развития в рядах динамики
7 Понятие корреляционной связи
8 Экстраполяция в рядах динамики и прогнозирование
II. Практическая часть
III. Аналитическая часть
Заключение
Список использованной литературы
Σ∆yц
∆yц = n
где, n – число цепных абсолютных приростов (∆yц) в изучаемом периоде.
Средний абсолютный прирост определим через накопленный (базисный) абсолютный прирост (∆yб). Для случая равных интервалов применим следующую формулу:
∆yб
∆yб = m-1
где т - число уровней ряда динамики в изучаемом периоде, включая базисный.
Сводной обобщающей
характеристикой интенсивности
Средний темп роста (снижения) - обобщенная характеристика индивидуальных темпов роста ряда динамики. В качестве основы и критерия правильности исчисления среднего темпа роста (снижения) применяется определяющий показатель – произведение цепных темпов роста, равное темпу роста за весь рассматриваемый период. Следовательно, если значение признака образуется как произведение отдельных вариантов, то нужно применять среднюю геометрическую.
Средние темпы прироста (сокращения) рассчитываются на основе средних темпов роста, вычитанием из последних 100 % Соответственно при исчислении средних коэффициентов при роста из значений коэффициентов роста вычитается единица:
Тпр = Тр – 100
где Tпр - средний темп прироста.
Если уровни ряда динамики снижаются, то средний темп роста будет меньше 100 %, а средний темп прироста - отрицательной величиной. Отрицательный темп прироста Tпр представляет собой средний темп сокращения и характеризует среднюю относительную скорость снижения уровня.
При анализе развития явлений, отражаемых двумя динамическими рядами, представляет интерес сравнение интенсивностей изменения во времени обоих явлений. Такое сопоставление интенсивностей изменения производится при сравнении динамических рядов одинакового содержания, но относящихся к разным территориям (странам, республикам, районам и т.п.), или к различным организациям (министерствам, предприятиям, учреждениям), или при сравнении рядов разного содержания, но характеризующих один и тот же объект. Например, сравнение рядов динамики, характеризующих численность рабочих и стоимость ОПФ.
Сравнительные характеристики направления и интенсивности роста одновременно развивающихся во времени явлений определяются приведением рядов динамики к общему (единому) основанию и расчетом коэффициентов опережения (отставания).
Ряды динамики (в которых возникают, например, проблемы сопоставимости цен сравниваемых стран, методики расчета сравниваемых показателей и т.п.) обычно приводят к одному основанию, если они не могут быть решены другими методами. По исходным уровням нескольких рядов динамики определяют относительные величины — базисные темпы роста или прироста. Принятый при этом за базу сравнения период времени (дата) выступает в качестве постоянной базы расчетов темпов роста для каждого из изучаемых рядов динамики. зависимости от целей исследования базой может быть начальный, средний или другой уровень ряда.
6 Методы анализа основной тенденции развития
в рядах динамики
Одной из важнейших задач статистики является определение в рядах динамики общей тенденции развития явления.
В некоторых случаях закономерность изменения явления, общая тенденция его развития явно и отчетливо отражается уровнями динамического ряда (уровни на изучаемом периоде непрерывно растут или непрерывно снижаются).
Однако часто приходится встречаться с такими рядами динамики, в которых уровни ряда претерпевают самые различные изменения (то возрастают, то убывают), и общая тенденция развития неясна.
На развитие явления во времени оказывают влияние факторы, различные по характеру и силе воздействия. Одни из них оказывают практически постоянное воздействие и формируют в рядах динамики определенную тенденцию развития. Воздействие же других факторов может быть кратковременным или носить случайный характер.
Поэтому при анализе динамики речь идет не просто о тенденции развития, а об основной тенденции, достаточно стабильной (устойчивой) на протяжении изученного этапа развития.
Основной тенденцией развития (трендом) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний.
Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользя щей средней и аналитического выравнивания.
Одним из наиболее простых методов изучения основ ной тенденции в рядах динамики является укрупнение интервалов. Он основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов). Например, ряд ежесуточного выпуска продукции заменяется рядом месячного выпуска продукции и т.д. Средняя, исчисленная по укрупненным интервалам, позволяет выявлять направление и характер (ускорение или замедление роста) основной тенденции развития.
Выявление основной тенденции может осуществляться также методом скользящей (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т.д.), первых по счёту уровней ряда, затем — из такого же числа уровней,, но начиная со второго по счету, далее — начиная с третьего и т.д.
таким образом, средняя как бы "скользит" по ряду динамики, передвигаясь на один срок.
Недостатком сглаживания ряда является «укорачивание» сглаженного ряда по сравнению с фактическим, а следователь но, потеря информации.
Рассмотренные приемы сглаживания динамических рядов (укрупнение интервалов и метод скользящей средней) дают возможность определить лишь общую тенденцию развития явления, более или менее освобожденную от случайных и волнообразных колебаний. Однако получить обобщенную статистическую модель тренда посредством этих методов нельзя.
Для того чтобы дать количественную модель, выражающую основную тенденцию изменения уровней динамического ряда во времени, используется аналитическое выравнивание ряда динамики.
Основным содержанием метода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени:
ŷt = f (t)
где ŷt — уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени.
Определение теоретических (расчетных) уровней ŷt производится на основе так называемой адекватной математической модели, которая наилучшим образом отображает (аппроксимирует) основную тенденцию ряда динамики.
Выбор типа модели зависит от цели исследования и дол жен быть основан на теоретическом анализе, выявляющем характер развития явления, а также на графическом изображении ряда динамики (линейной диаграмме).
Например, простейшими моделями (формулами),
выражающими тенденцию
линейная функция - прямая ŷt = а0 + a1t,
где aо + a1 – параметры уравнения; t – время;
показательная функция ŷt = а0 а1 ;
степенная функция - кривая второго порядка (парабола)
ŷt = а0 + a1t + a2t².
В тех случаях, когда требуется особо точное изучение тенденции развития (например, модели тренда для прогнозирования), при выборе вида адекватной функции можно использовать специальные критерии математической статистики.
Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими и эмпирическими уровнями:
Σ(ŷt – yi)² →min
где yt - .выравненные (расчетные) уровни; yi фактические уровни.
Параметры уравнения а, удовлетворяющие этому условию. могут быть найдены решением системы нормальных уравнений. На основе найденного уравнения тренда вычисляются выравненные уровни. Таким образом, выравнивание ряда динамики заключается в замене фактических уровней .... плавно изменяющимися уровнями ŷt, наилучшим образом аппроксимирующими статистические данные.
Выравнивание по прямой используется, как правило, в тех случаях, когда абсолютные приросты практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии (или близко к ней).
Выравнивание
по показательной функции использу
Рассмотрим «технику» выравнива
ŷt = а0 + a1t. Параметры . а0, a1.. согласно методу наименьших квадратов, находятся решением следующей системы нормальных уравнений, полученной путем алгебраического преобразования условия Σ(ŷt – yi)² →min :
а0 n + a1 Σt = Σy
а0 Σt + a1 Σt² = Σyt,
где у - фактические (эмпирические) уровни ряда; t - время (порядковый номер периода или момента времени).
Расчет параметров значительно упрощается, если за начало отсчета времени (t = 0) принять центральный интервал (момент).
При четном числе уровней (например, 6), значения t -условного обозначения времени будут такими (это равнозначно измерению времени не в годах, а в полугодиях):
1990 1991 1992 1993 1994 1995
- 5 -3 -1 +1 +3 +5
При нечетном числе уровней (например, 7) значения устанавливаются по-другому:
1989 1990 1991 1992 1993 1994 1995
-3 -2 -1 0 +1 +2 +3
В обоих случаях Σt = 0, так что система нормальных уравнений принимает вид:
Σy = n а0;
Σyt = a1 Σt²
Из первого уравнения а0 = n
Из второго уравнения: a1 = Σt
7 Методы изучения сезонных колебаний
При сравнении квартальных и месячных данных многих социально – экономических явлений часто обнаруживаются периодические
колебания, возникающие под влиянием смены времен года. Они являются результатом влияния природно-климатических условий, общих экономических факторов, а также многочисленных и разнообразных факторов, которые часто являются регулируемыми.
В широком понимании к сезонным относят все явления, которые обнаруживают в своем развитии отчетливо выраженную закономерность внутригодовых изменений, т.е. более или менее устойчиво повторяющиеся из года в год колебания уровней.
В статистике периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название «сезонные колебания» или «сезонные волны», а динамический ряд в этом случае называют сезонным рядом динамики.
Сезонные колебания
наблюдаются в различных
Сезонные колебания
обычно отрицательно влияют на результаты
производственной деятельности, вызывая
нарушения ритмичности
Комплексное регулирование
сезонных изменений по от
дельным отраслям экономики должно основываться
на исследовании сезонных колебаний.
В статистике существует ряд методов изучения и измерения сезонных колебаний. Самый простой заключается в построении специальных показателей, которые называются индексами сезонности Is. Совокупность этих показателей отражает сезонную волну. Индексами сезонности являются процентные отношения фактических (эмпирических) внутригрупповых уровней к теоретическим (расчетным) уровням, выступающих, в качестве базы сравнения.
Для того чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года, индексы сезонности вычисляют по данным за несколько лог (не менее трех), распределенным по месяцам.
Информация о работе Статистические методы анализа динамики численности работников