Автор: Пользователь скрыл имя, 14 Января 2015 в 00:40, контрольная работа
Выбрать датчик для измерения физической величины в соответствии с заданием. В процессе подготовки проводится литературный обзор методов измерения, принципов работы и конструкций датчиков заданной физической величины. Приводятся технические и метрологические характеристики, измерительная цепь выбранного датчика.
Казанский Государственный Технический Университет
им. А.Н. Туполева
Институт радиоэлектроники и телекоммуникаций
Кафедра РИИТ
Контрольная работа по дисциплине
"Основы измерения физических величин"
Вариант 9
Работ выполнил студент гр. 5571
Гильманов И.З.
Работу проверил преподаватель
Шахтурин Д.В.
Казань 2015
Задание на контрольную работу
Выбрать датчик для измерения физической величины в соответствии с заданием. В процессе подготовки проводится литературный обзор методов измерения, принципов работы и конструкций датчиков заданной физической величины. Приводятся технические и метрологические характеристики, измерительная цепь выбранного датчика.
Вариант |
Тип датчика |
Параметры датчика | |||
Диапазон измерения |
Диапазон рабочих температур |
Приведенные погрешности |
Размеры, | ||
9. |
Датчик температур |
0…1500 °С |
0…+1500 °С |
2 % |
5×5×100 мм |
Введение.
В то время как производственный мир становится все более автоматизированным, промышленные датчики играют все большую роль для увеличения продуктивности и безопасности.
В течение двух десятилетий во всех отраслях производства успешно применяются датчики и измерители пути: датчик положения, датчик перемещения. Являясь связующим звеном между электронной и механической частями приборов, датчик перемещения, датчик положения стал неотъемлемым элементом оборудования для автоматизации различных процессов.
Данная работа посвящена термодатчикам, а именно терморезистивным, полупроводниковым, термоэлектрическим, акустическим и пъезоэлектричиским датчикам измерения температуры. Каждый вид имеет свои сильные и слабые стороны, поэтому в зависимости от условий и требований по применению датчика, выбирают тот или иной тип.
Цель работы: изучить устройства, принцип работы и особенности датчиков, явления, лежащие в основе их работы, применение, выявить их достоинства и недостатки.
Датчик, общие сведения.
Датчик, сенсор (от англ. sensor) — термин систем управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал.
В настоящее время различные датчики широко используются при построении систем автоматизированного управления.
Датчики являются элементом технических систем, предназначенных для измерения, сигнализации, регулирования, управления устройствами или процессами. Датчики преобразуют контролируемую величину (давление, температура, расход, концентрация, частота, скорость, перемещение, напряжение, электрический ток и т. п.) в сигнал (электрический, оптический, пневматический), удобный для измерения, передачи, преобразования, хранения и регистрации информации о состоянии объекта измерений.
Исторически и логически датчики связаны с техникой измерений и измерительными приборами, например термометры, расходомеры, барометры, прибор «авиагоризонт» и т. д. Обобщающий термин датчик укрепился в связи с развитием автоматических систем управления, как элемент обобщенной логической концепции датчик — устройство управления — исполнительное устройство — объект управления. Специальный случай представляет использование датчиков в автоматических системах регистрации параметров, например, в системах научных исследований.
Широко встречаются два основных значения:
Эти значения соответствуют практике использования термина производителями датчиков. В первом случае датчик это небольшое, обычно монолитное устройство электронной техники, например, терморезистор, фотодиод и т. п., которое используется для создания более сложных электронных приборов. Во втором случае — это законченный по своей функциональности прибор, подключаемый по одному из известных интерфейсов к системе автоматического управления или регистрации. Например, фотодиоды в матрицах (фото) и др.
В зависимости от вида входной (измеряемой) величины различают:
датчики механических перемещений (линейных и угловых),
-пневматические,
-электрические,
-расходомеры,
-датчики скорости,
-ускорения,
-усилия,
-температуры,
-давления
и др.
Различают три класса датчиков:
- аналоговые датчики, т. е. датчики,
вырабатывающие аналоговый
- цифровые датчики, генерирующие
последовательность импульсов
- бинарные (двоичные) датчики, которые
вырабатывают сигнал только
Теоретические сведения о датчиках
температуры и датчика данного в задании.
Виды датчиков температуры, по типу действия
Терморезистивные термодатчики
Терморезистивные термодатчики — основаны на принципе изменения электрического сопротивления (полупроводника или проводника) при изменении температуры. Разработаны они были впервые для океанографических исследований. Основным элементом является терморезистор — элемент изменяющий свое сопротивление в зависимости от температуры окружающей среды.
Несомненные преимущества термодатчиков этого типа это долговременная стабильность, высокая чувствительность, а также простота создания интерфейсных схем.
На изображении приведен датчик 702-101BBB-A00, диапазон измерения которого от -50 до +130 °С. Этот датчик относиться к группе кремневых резистивных датчиках(что это такое читайте двумя абзацами ниже). Обратите внимание, на его размеры. Производит этот датчик фирма Honeywell International
В зависимости от материалов используемых для производства терморезистивных датчиков различают:
Резистивные детекторы температуры(РДТ). Эти датчики состоят из металла, чаще всего платины. В принципе, любой мета изменяет свое сопротивление при воздействии температуры, но используют платину так как она обладает долговременной стабильностью, прочностью и воспроизводимостью характеристик. Для измерений температур более 600 °С может использоваться также вольфрам. Минусом этих датчиков является высокая стоимость и нелинейность характеристик.
Кремневые резистивные датчики. Преимущества этих датчиков —хорошая линейность и высокая долговременная стабильностью. Также эти датчики могут встраиваться прямо в микроструктуры.
Термисторы. Эти датчики изготавливаются из металл-оксидных соединений. Датчики измеряет только абсолютную температуру. Существенным недостатком термисторов является необходимость их калибровки и большой нелинейностью, а также старение, однако при проведении всех необходимых настроек могут использоваться для прецизионных измерений.
Полупроводниковые
В качестве примера изображен полупроводниковый датчик температуры LM75A, выпускаемый фирмой NXP Semiconductors. Диапазон измерений этого датчика от -55 до +150.
Полупроводниковые датчики регистрируют изменение характеристик p-n перехода под влиянием температуры. В качестве термодатчиков могут быть использованы любые диоды или биполярные транзисторы. Пропорциональная зависимость напряжения на транзисторах от абсолютной температуры (в Кельвинах) дает возможность реализовать довольно точный датчик.
Достоинства таких датчиков — простота и низкая стоимость, линейность характеристик, маленькая погрешность. Кроме того, эти датчики можно формировать прямо на кремневой подложке. Все это делает полупроводниковые датчики очень востребованными.
Термоэлектрические (термопары)
Термоэлектрические преобразователи — иначе, термопары. Они действуют по принципу термоэлектрического эффекта, то есть благодаря тому, что в любом замкнутом контуре (из двух разнородных полупроводников или проводников) возникнет электрический ток, в случае если места спаев отличаются по температуре. Так, один конец термопары (рабочий) погружен в среду, а другой (свободный) – нет. Таким образом, получается, что термопары это относительные датчики и выходное напряжение будет зависеть от разности температур двух частей. И почти не будет зависеть от абсолютных их значений.
Выглядеть термопара может так, как показано на рисунке. Это термопара ДТПКХХ4, она измеряет температуры в пределах от -40 до +400. Производит его российская компания Овен.
Диапазон измеряемых с их помощью температур, от -200 до 2200 градусов, и напрямую зависит от используемых в них материалов. Например, термопары из неблагородных металлов – до 1100 °С. Термопары из благородных металлов (платиновая группа) – от 1100 до 1600 градусов. Если необходимо произвести замеры температур свыше этого, используются жаростойкие сплавы (основой служит вольфрам). Как правило используется в комплекте с милливольтметром, а свободный конец (конструктивно выведенный на головку) удален от измеряемой среды с помощью удлиняющего провода. Одним из недостатков термопары является достаточно большая погрешность. Наиболее распространенным способом применения термопар являются электронные термометры.
Пирометры
Пирометры – бесконтактные датчики, регистрирующие излучение исходящее от нагретых тел. Основным достоинством пирометров (в отличие от предыдущих температурных датчиков) является отсутствие необходимости помещать датчик непосредственно в контролируемую среду. В результате такого погружения часто происходит искажение исследуемого температурного поля, не говоря уже о снижении стабильности характеристик самого датчика.
Различают три вида пирометров:
Флуоресцентные. При измерении температуры посредством флуоресцентных датчиков на поверхность объекта, температуру которого необходимо измерить, наносят фосфорные компоненты. Затем объект подвергают воздействию ультрафиолетового импульсного излучения, в результате которого возникает послеизлучение флуоресцентного слоя, свойства которого зависят от температуры. Это излучение детектируется и анализируется.
Интерферометрические. Интерферометрические датчики температуры основаны на сравнении свойств двух лучей – контрольного и пропущенного через среду, параметры которой меняются в зависимости от температуры. Чувствительным элементом этого типа датчиков чаще всего выступает тонкий кремниевый слой, на коэффициент преломления которого, а, соответственно, и на длину пути луча, влияет температура.
Датчики на основе растворов, меняющих цвет при температурном воздействии. В этом типе датчиков-пирометров применяется хлорид кобальта, раствор которого имеет тепловую связь с объектом, температуру которого необходимо измерить. Коэффициент поглощения видимого спектра у раствора хлорида кобальта зависит от температуры. При изменении температуры меняется величина прошедшего через раствор света.
Акустические
Акустические термодатчики – используются преимущественно для измерения средних и высоких температур. Акустический датчик построен на принципе того, что в зависимости от изменения температуры, меняется скорость распространения звука в газах. Состоит из излучателя и приемника акустических волн (пространственно разнесенных). Излучатель испускает сигнал, который проходит через исследуемую среду, в зависимости от температуры скорость сигнала меняется и приемник после получения сигнала считает эту скорость.
Используются для определения температур, которые нельзя измерить контактными методами. Также применяются в медицине для неинвазивных (без операционного проникновения внутрь тела больного) измерения глубинной температуры, например, в онкологии. Недостатками таких измерений является то, что при прикосновении они могут вызывать ответные физиологические реакции, что в свою очередь влечет искажение измерения глубинной температуры. Кроме того, могут возникать отражения на границе «датчик-тело», что также способно вызывать погрешности.
Информация о работе Контрольная работа по "Основы измерения физических величин"