Автор: Пользователь скрыл имя, 06 Ноября 2011 в 09:44, курсовая работа
ЦЕЛЬ ИССЛЕДОВАНИЯ: Разработка теста-опросника для исследования уровня тревожности у учеников старших классов, который соответствовал бы установленным требованиям к опросникам и обладал достаточной валидностью и надежностью.
ОБЪЕКТ ИССЛЕДОВАНИЯ: тревога как психическое явление.
ПРЕДМЕТ ИССЛЕДОВАНИЯ: разработка теста–опросника, отражающего уровни тревоги у учеников старших классов.
ЗАДАЧИ ИССЛЕДОВАНИЯ:
Рассмотрение понятие (структуру понятия);
Разработка опросника;
Проведение анализа трудности задания;
Рассчёт дискриминативности;
Опредление надёжности (ретестовой надёжности и надёжности частей теста);
Вычисление валидности теста;
Проведение стандартизации показателей;
Рассчёт ассиметрии и эксцесса эмпирического исследования;
Введение……………………………………………………………………………..3
1. Составление опросника………………………………………………………….6
2. Анализ трудности задания………………………………………………………7
2.1. Вычисление индекса и коэффициента дискриминативности……………….9
2.2. Определение надёжности целого теста………………………………………19
2.3. Определение надежности частей теста……………………………………...25
2.4. Определение валидности теста………………………………………………31
2.5. Стандартизация показателей (z-преобразование оценок)…………………..34
2.6. Определение асимметрии и эксцесса распределения………………………38
Заключение………………………………………………………………………...43
Список использованной литературы………………………………………….…44
n-общее количество испытуемых, для первого испытания;
Следовательно:
Sy=
- Вычисляем коэффициент корреляции между двумя тестовыми испытаниями, для этого используем формулу коэффициента корреляции произведений моментов Пирсона:
Воспользуемся следующей таблицей:
Таблица 8
i | Xi | Yi | * | ||
1 | 46 | 15,18 | 45 | 13,02 | 197,6436 |
2 | 43 | 12,18 | 43 | 11,02 | 134,2236 |
3 | 40 | 9,18 | 41 | 9,02 | 82,8036 |
4 | 30 | -0,82 | 34 | 2,02 | -1,6564 |
5 | 35 | 4,18 | 35 | 3,02 | 12,6236 |
6 | 17 | -13,82 | 23 | -8,98 | 124,1036 |
7 | 27 | -3,82 | 26 | -5,98 | 22,8436 |
8 | 22 | -8,82 | 29 | -2,98 | 26,2836 |
9 | 18 | -12,82 | 21 | -10,98 | 140,7636 |
10 | 38 | 7,18 | 38 | 6,02 | 43,2236 |
11 | 42 | 11,18 | 42 | 10,02 | 112,0236 |
12 | 39 | 8,18 | 40 | 8,02 | 65,6036 |
13 | 32 | 1,18 | 34 | 2,02 | 2,3836 |
14 | 45 | 14,18 | 44 | 12,02 | 170,4436 |
15 | 39 | 8,18 | 40 | 8,02 | 65,6036 |
16 | 44 | 13,18 | 45 | 13,02 | 171,6036 |
17 | 15 | -15,82 | 18 | -13,98 | 221,1636 |
18 | 47 | 16,18 | 47 | 15,02 | 243,0236 |
19 | 36 | 5,18 | 38 | 6,02 | 31,1836 |
20 | 35 | 4,18 | 35 | 3,02 | 12,6236 |
21 | 28 | -2,82 | 28 | -3,98 | 11,2236 |
22 | 16 | -14,82 | 20 | -11,98 | 177,5436 |
23 | 26 | -4,82 | 26 | -5,98 | 28,8236 |
24 | 38 | 7,18 | 38 | 6,02 | 43,2236 |
25 | 42 | 11,18 | 43 | 11,02 | 123,2036 |
26 | 30 | -0,82 | 32 | 0,02 | -0,0164 |
27 | 13 | -17,82 | 16 | -15,98 | 284,7636 |
28 | 43 | 12,18 | 42 | 10,02 | 122,0436 |
29 | 36 | 5,18 | 38 | 6,02 | 31,1836 |
30 | 21 | -9,82 | 24 | -7,98 | 78,3636 |
31 | 40 | 9,18 | 40 | 8,02 | 73,6236 |
32 | 48 | 17,18 | 47 | 15,02 | 258,0436 |
33 | 36 | 5,18 | 37 | 5,02 | 26,0036 |
34 | 18 | -12,82 | 20 | -11,98 | 153,5836 |
35 | 40 | 9,18 | 40 | 8,02 | 73,6236 |
36 | 43 | 12,18 | 44 | 12,02 | 146,4036 |
37 | 17 | -13,82 | 19 | -12,98 | 179,3836 |
38 | 27 | -3,82 | 29 | -2,98 | 11,3836 |
39 | 15 | -15,82 | 18 | -13,98 | 221,1636 |
40 | 19 | -11,82 | 19 | -12,98 | 153,4236 |
41 | 29 | -1,82 | 29 | -2,98 | 5,4236 |
42 | 26 | -4,82 | 28 | -3,98 | 19,1836 |
43 | 34 | 3,18 | 35 | 3,02 | 9,6036 |
44 | 32 | 1,18 | 33 | 1,02 | 1,2036 |
45 | 19 | -11,82 | 19 | -12,98 | 153,4236 |
46 | 16 | -14,82 | 17 | -14,98 | 222,0036 |
47 | 25 | -5,82 | 25 | -6,98 | 40,6236 |
48 | 17 | -13,82 | 18 | -13,98 | 193,2036 |
49 | 18 | -12,82 | 18 | -13,98 | 179,2236 |
50 | 39 | 8,18 | 39 | 7,02 | 57,4236 |
∑ * | 4956,82 |
Коэффициент корреляции между двумя испытаниями равен
r=4956, 82/ ((50-1)*10,538*9,705) = 0,989
Чем ближе к 1 значение r, тем выше надёжность теста.
Минимальное значение коэффициента корреляции равно 0,7.
Это значит, что 98% испытуемых выполнили задание с теми самыми значениями. Это говорит о достаточной высокой надежности разработанного теста.
2.3. ОПРЕДЕЛЕНИЕ НАДЁЖНОСТИ ЧАСТЕЙ ТЕСТА
Надёжность частей теста определяется сопоставлением результатов тестирования по двум эквивалентным частям теста. Нужно тест на 2 одинаковый части по принципу деления на чётные и нечётные номера заданий.
Всех испытуемых мы протестируем сначала по одной части теста, а затем по другой.
После тестирования вычислим коэффициент корреляции:
- Вычисляем стандартные отклонения ( 1 и 2) для половин теста:
X1i - общий балл, полученный каждым испытуемым по первой половине теста,
- среднее арифметическое баллов, полученных всеми испытуемыми по первой половине теста.
X2i - общий балл, полученный каждым испытуемым по второй половине теста,
- среднее арифметическое баллов, полученных всеми испытуемыми по второй половине теста.
Значения X1i и X2i по четной и нечетной частям теста представлено в таблице 9.
Таблиц
i | X1i | X2i |
1 | 24 | 22 |
2 | 24 | 19 |
3 | 19 | 21 |
4 | 14 | 16 |
5 | 19 | 16 |
6 | 7 | 10 |
7 | 14 | 13 |
8 | 13 | 9 |
9 | 10 | 8 |
10 | 18 | 20 |
11 | 22 | 20 |
12 | 18 | 21 |
13 | 17 | 15 |
14 | 23 | 22 |
15 | 20 | 19 |
16 | 22 | 22 |
17 | 9 | 6 |
18 | 24 | 23 |
19 | 19 | 17 |
20 | 21 | 14 |
21 | 14 | 14 |
22 | 8 | 8 |
23 | 11 | 15 |
24 | 19 | 19 |
25 | 22 | 20 |
26 | 16 | 14 |
27 | 7 | 6 |
28 | 22 | 21 |
29 | 19 | 17 |
30 | 10 | 11 |
31 | 18 | 22 |
32 | 25 | 23 |
33 | 17 | 19 |
34 | 10 | 8 |
35 | 20 | 20 |
36 | 22 | 21 |
37 | 9 | 8 |
38 | 12 | 15 |
39 | 7 | 8 |
40 | 11 | 8 |
41 | 15 | 14 |
42 | 15 | 11 |
43 | 18 | 16 |
44 | 17 | 15 |
45 | 11 | 8 |
46 | 8 | 8 |
47 | 11 | 14 |
48 | 7 | 10 |
49 | 11 | 7 |
50 | 18 | 21 |
∑ | 787 | 754 |
На основании данных, приведенных в таблице:
Для вычисления значений 1 и 2 воспользуемся следующей таблицей.
Таблица 10.
i | X1i | X2i | ||||
1 | 24 | 22 | 8,26 | 6,92 | 68,2276 | 47,8864 |
2 | 24 | 19 | 8,26 | 3,92 | 68,2276 | 15,3664 |
3 | 19 | 21 | 3,26 | 5,92 | 10,6276 | 35,0464 |
4 | 14 | 16 | -1,74 | 0,92 | 3,0276 | 0,8464 |
5 | 19 | 16 | 3,26 | 0,92 | 10,6276 | 0,8464 |
6 | 7 | 10 | -8,74 | -5,08 | 76,3876 | 25,8064 |
7 | 14 | 13 | -1,74 | -2,08 | 3,0276 | 4,3264 |
8 | 13 | 9 | -2,74 | -6,08 | 7,5076 | 36,9664 |
9 | 10 | 8 | -5,74 | -7,08 | 32,9476 | 50,1264 |
10 | 18 | 20 | 2,26 | 4,92 | 5,1076 | 24,2064 |
11 | 22 | 20 | 6,26 | 4,92 | 39,1876 | 24,2064 |
12 | 18 | 21 | 2,26 | 5,92 | 5,1076 | 35,0464 |
13 | 17 | 15 | 1,26 | -0,08 | 1,5876 | 0,0064 |
14 | 23 | 22 | 7,26 | 6,92 | 52,7076 | 47,8864 |
15 | 20 | 19 | 4,26 | 3,92 | 18,1476 | 15,3664 |
16 | 22 | 22 | 6,26 | 6,92 | 39,1876 | 47,8864 |
17 | 9 | 6 | -6,74 | -9,08 | 45,4276 | 82,4464 |
18 | 24 | 23 | 8,26 | 7,92 | 68,2276 | 62,7264 |
19 | 19 | 17 | 3,26 | 1,92 | 10,6276 | 3,6864 |
20 | 21 | 14 | 5,26 | -1,08 | 27,6676 | 1,1664 |
21 | 14 | 14 | -1,74 | -1,08 | 3,0276 | 1,1664 |
22 | 8 | 8 | -7,74 | -7,08 | 59,9076 | 50,1264 |
23 | 11 | 15 | -4,74 | -0,08 | 22,4676 | 0,0064 |
24 | 19 | 19 | 3,26 | 3,92 | 10,6276 | 15,3664 |
25 | 22 | 20 | 6,26 | 4,92 | 39,1876 | 24,2064 |
26 | 16 | 14 | 0,26 | -1,08 | 0,0676 | 1,1664 |
27 | 7 | 6 | -8,74 | -9,08 | 76,3876 | 82,4464 |
28 | 22 | 21 | 6,26 | 5,92 | 39,1876 | 35,0464 |
29 | 19 | 17 | 3,26 | 1,92 | 10,6276 | 3,6864 |
30 | 10 | 11 | -5,74 | -4,08 | 32,9476 | 16,6464 |
31 | 18 | 22 | 2,26 | 6,92 | 5,1076 | 47,8864 |
32 | 25 | 23 | 9,26 | 7,92 | 85,7476 | 62,7264 |
33 | 17 | 19 | 1,26 | 3,92 | 1,5876 | 15,3664 |
34 | 10 | 8 | -5,74 | -7,08 | 32,9476 | 50,1264 |
35 | 20 | 20 | 4,26 | 4,92 | 18,1476 | 24,2064 |
36 | 22 | 21 | 6,26 | 5,92 | 39,1876 | 35,0464 |
37 | 9 | 8 | -6,74 | -7,08 | 45,4276 | 50,1264 |
38 | 12 | 15 | -3,74 | -0,08 | 13,9876 | 0,0064 |
39 | 7 | 8 | -8,74 | -7,08 | 76,3876 | 50,1264 |
40 | 11 | 8 | -4,74 | -7,08 | 22,4676 | 50,1264 |
41 | 15 | 14 | -0,74 | -1,08 | 0,5476 | 1,1664 |
42 | 15 | 11 | -0,74 | -4,08 | 0,5476 | 16,6464 |
43 | 18 | 16 | 2,26 | 0,92 | 5,1076 | 0,8464 |
44 | 17 | 15 | 1,26 | -0,08 | 1,5876 | 0,0064 |
45 | 11 | 8 | -4,74 | -7,08 | 22,4676 | 50,1264 |
46 | 8 | 8 | -7,74 | -7,08 | 59,9076 | 50,1264 |
47 | 11 | 14 | -4,74 | -1,08 | 22,4676 | 1,1664 |
48 | 7 | 10 | -8,74 | -5,08 | 76,3876 | 25,8064 |
49 | 11 | 7 | -4,74 | -8,08 | 22,4676 | 65,2864 |
50 | 18 | 21 | 2,26 | 5,92 | 5,1076 | 35,0464 |
∑ | 1445,62 | 1423,68 |
На основании приведенных данных:
Поскольку 1≈ 2, то коэффициент надёжности целого теста вычисляется по формуле:
r
r – коэффициент надёжности половин теста, вычисляемый по формуле:
X- общий балл, полученный каждым испытуемым по первой половине теста,
- среднее арифметическое баллов, полученных всеми испытуемыми по первой половине теста.
Y- общий балл, полученный каждым испытуемым по второй половине теста,
- среднее арифметическое баллов, полученных всеми испытуемыми по второй половине теста.
Все исходные данные для вычисления коэффициента надёжности половин теста приведены в таблице 10.
На основании приведенных данных коэффициент надежности половин теста равен:
r=
Соответственно,
r
Если значения коэффициента rxx попадают в интервал 0,80-0,89, то тест обладает хорошей надежностью, а если этот коэффициент не меньше 0,90, то надежность можно назвать очень высокой.
2.5. ОПРЕДЕЛЕНИЕ ВАЛИДНОСТИ ТЕСТА
Валидность теста показывает, насколько хорошо тест делает то, для чего он был создан. Определение коэффициент валидности теста – значит определение того, как выполненный тест соотносится с другими независимо сделанными оценками знаний испытуемых.
Валидация – улучшение качеств теста, например, после сопоставления результатов по тестам и нетестовым формам контроля.
Валидность измеряется коэффициентом валидности. Это число между 0 и 1, которое степень близости «r» между тестом и мерой выполнения «работы» (критерием). Чем больше значение коэффициента, тем больше уврененность в результатах, основанных на тестовом балле. Но всё же ни один тест никогда не может полностью определить степень исполнения «работы», так как слишком много различных факторов влияют на успех в «работе». Поэтому коэффициент валидности, в отличие от коэффициентов надежности, редко превышает r = 0.40.
В данном случае нами будет рассчитываться валидность путем нахождения коэффициента корреляции между результатами тестирования разработанной нами методикой и другой методикой, исследующей данный конструкт, с доказанной валидностью. Для этого нужно использовать формулу коэффициента корреляции Пирсона:
r
bi – результат каждого испытуемого по валидному тесту.
Подробные вычисления коэффициента корреляции Пирсона представлены в таблице 11.
Таблица 11.
i | Xi | bi | Xi-X | Bi-B | (Xi-X)^2 | (Bi-B)^2 |
1 | 46 | 44 | 15,18 | 9,36 | 230,4324 | 87,6096 |
2 | 43 | 42 | 12,18 | 7,36 | 148,3524 | 54,1696 |
3 | 40 | 42 | 9,18 | 7,36 | 84,2724 | 54,1696 |
4 | 30 | 36 | -0,82 | 1,36 | 0,6724 | 1,8496 |
5 | 35 | 40 | 4,18 | 5,36 | 17,4724 | 28,7296 |
6 | 17 | 36 | -13,82 | 1,36 | 190,9924 | 1,8496 |
7 | 27 | 32 | -3,82 | -2,64 | 14,5924 | 6,9696 |
8 | 22 | 32 | -8,82 | -2,64 | 77,7924 | 6,9696 |
9 | 18 | 27 | -12,82 | -7,64 | 164,3524 | 58,3696 |
10 | 38 | 44 | 7,18 | 9,36 | 51,5524 | 87,6096 |
11 | 42 | 47 | 11,18 | 12,36 | 124,9924 | 152,7696 |
12 | 39 | 39 | 8,18 | 4,36 | 66,9124 | 19,0096 |
13 | 32 | 35 | 1,18 | 0,36 | 1,3924 | 0,1296 |
14 | 45 | 46 | 14,18 | 11,36 | 201,0724 | 129,0496 |
15 | 39 | 42 | 8,18 | 7,36 | 66,9124 | 54,1696 |
16 | 44 | 42 | 13,18 | 7,36 | 173,7124 | 54,1696 |
17 | 15 | 29 | -15,82 | -5,64 | 250,2724 | 31,8096 |
18 | 47 | 49 | 16,18 | 14,36 | 261,7924 | 206,2096 |
19 | 36 | 42 | 5,18 | 7,36 | 26,8324 | 54,1696 |
20 | 35 | 36 | 4,18 | 1,36 | 17,4724 | 1,8496 |
21 | 28 | 32 | -2,82 | -2,64 | 7,9524 | 6,9696 |
22 | 16 | 28 | -14,82 | -6,64 | 219,6324 | 44,0896 |
23 | 26 | 28 | -4,82 | -6,64 | 23,2324 | 44,0896 |
24 | 38 | 38 | 7,18 | 3,36 | 51,5524 | 11,2896 |
25 | 42 | 44 | 11,18 | 9,36 | 124,9924 | 87,6096 |
26 | 30 | 35 | -0,82 | 0,36 | 0,6724 | 0,1296 |
27 | 13 | 18 | -17,82 | -16,64 | 317,5524 | 276,8896 |
28 | 43 | 42 | 12,18 | 7,36 | 148,3524 | 54,1696 |
29 | 36 | 40 | 5,18 | 5,36 | 26,8324 | 28,7296 |
30 | 21 | 26 | -9,82 | -8,64 | 96,4324 | 74,6496 |
31 | 40 | 38 | 9,18 | 3,36 | 84,2724 | 11,2896 |
32 | 48 | 45 | 17,18 | 10,36 | 295,1524 | 107,3296 |
33 | 36 | 40 | 5,18 | 5,36 | 26,8324 | 28,7296 |
34 | 18 | 26 | -12,82 | -8,64 | 164,3524 | 74,6496 |
35 | 40 | 44 | 9,18 | 9,36 | 84,2724 | 87,6096 |
36 | 43 | 42 | 12,18 | 7,36 | 148,3524 | 54,1696 |
37 | 17 | 23 | -13,82 | -11,64 | 190,9924 | 135,4896 |
38 | 27 | 33 | -3,82 | -1,64 | 14,5924 | 2,6896 |
39 | 15 | 25 | -15,82 | -9,64 | 250,2724 | 92,9296 |
40 | 19 | 28 | -11,82 | -6,64 | 139,7124 | 44,0896 |
41 | 29 | 30 | -1,82 | -4,64 | 3,3124 | 21,5296 |
42 | 26 | 31 | -4,82 | -3,64 | 23,2324 | 13,2496 |
43 | 34 | 33 | 3,18 | -1,64 | 10,1124 | 2,6896 |
44 | 32 | 35 | 1,18 | 0,36 | 1,3924 | 0,1296 |
45 | 19 | 24 | -11,82 | -10,64 | 139,7124 | 113,2096 |
46 | 16 | 18 | -14,82 | -16,64 | 219,6324 | 276,8896 |
47 | 25 | 26 | -5,82 | -8,64 | 33,8724 | 74,6496 |
48 | 17 | 24 | -13,82 | -10,64 | 190,9924 | 113,2096 |
49 | 18 | 18 | -12,82 | -16,64 | 164,3524 | 276,8896 |
50 | 39 | 36 | 8,18 | 1,36 | 66,9124 | 1,8496 |
∑ | 1541 | 1732 | 49,75 | 35,52 | 5441,38 | 3253,52 |
Информация о работе Составление теста-опросника по диагностике тревожности у подростков