Автор: Пользователь скрыл имя, 18 Апреля 2013 в 23:24, курсовая работа
Алгебра как искусство решать уравнения зародились очень давно в связи с потребностью практики, в результате поиска общих приёмов решения однотипных задач. Самые ранние дошедшие до нас рукописи свидетельствуют о том, что в Древнем Вавилоне и Древнем Египте были известны приёмы решения линейных уравнений.
В школе решению рациональных цравнений отводится много времени, всвязи с тем, что рациональных уравнений много,и каждый типо уравнений решается по своему.
Введение 3
Основные теоретические понятия 4
Теоремы о равносильности 6
Рациональные уравнения 8
3.1 Линейные уравнения 8
Системы линейных уравнений 9
Квадратные уравнения и уравнения, сводящиеся к ним….11
Возвратные уравнения……………………………………….20
Формулы Виета для многочленов высших степеней……...21
Системы уравнений второй степени………………………..23
Метод введения новых неизвестных при решении уравнений
и систем уравнений…………………………………………..26
Однородные уравнения……………………………………...29
Решение симметрических систем уравнений……………...32
3.10 Уравнения содержащие знак модуля……………………..34
Основыные способы решения рациональных уравнений...38
Заключение…………………………………………………….40
Список литературы……………………………………………41
= (x + (b / 2a))2 – (b2) / (4a2) + (c / a) = (x + (b / 2a))2 – ((b2 – 4ac) / (4a2)).
Для краткости обозначим выражение (b2 – 4ac) через D. Тогда полученное тождество примет вид
x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2)).
Возможны три случая:
D / (4a2) = (ÖD)2 / (2a)2 = (ÖD / 2a)2, потому тождество принимает вид
x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (ÖD / 2a)2.
По формуле разности квадратов выводим отсюда:
x2 + (b / a)x + (c / a) = (x + (b / 2a) – (ÖD / 2a))(x + (b / 2a) + (ÖD / 2a)) =
= (x – (( -b + ÖD) / 2a)) (x – (( – b – ÖD) / 2a)).
Теорема: Если выполняется тождество
ax2 + bx + c = a(x – x1)(x – x2),
то квадратное уравнение ax2 + bx + c = 0 при X1 ¹ X2 имеет два корня X1 и X2, а при X1 = X2 — лишь один корень X1.
В силу этой теоремы из, выведенного выше, тождества следует, что уравнение
x2 + (b / a)x + (c / a) = 0,
а тем самым и уравнение ax2 + bx + c = 0, имеет два корня:
X1=(-b + Ö D) / 2a; X2= (-b - Ö D) / 2a.
Таким образом x2 + (b / a)x + (c / a) = (x – x1)(x – x2).
Обычно эти корни записывают одной формулой:
где b2 – 4ac = D.
x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))
принимает вид x2 + (b / a)x + (c / a) = (x + (b / 2a))2.
Отсюда следует, что при D = 0 уравнение ax2 + bx + c = 0 имеет один корень кратности 2: X1 = – b / 2a
3) Если число D отрицательно (D < 0), то – D > 0, и потому выражение
x2 + (b / a)x + (c / a) = (x + (b / 2a))2 – (D / (4a2))
является суммой двух слагаемых, одно из которых неотрицательно, а другое положительно. Такая сумма не может равняться нулю, поэтому уравнение
x2 + (b / a)x + (c / a) = 0
не имеет действительных корней. Не имеет их и уравнение ax2 + bx + c = 0.
Таким образом,
для решения квадратного
D = b2 – 4ac.
Если D = 0, то квадратное уравнение имеет единственное решение:
X=-b / (2a).
Если D > 0, то квадратное уравнение имеет два корня:
X1=(-b + ÖD) / (2a); X2= (-b - ÖD) / (2a).
Если D < 0, то квадратное уравнение не имеет корней.
Если один из коэффициентов b или c равен нулю, то квадратное уравнение можно решать, не вычисляя дискриминанта:
Корни квадратного уравнения общего вида ax2 + bx + c = 0 находятся по формуле
Квадратное уравнение, в котором коэффициент при x2 равен 1, называется приведённым. Обычно приведённое квадратное уравнение обозначают так:
x2 + px + q = 0.
Теорема Виета.
Мы вывели тождество
x2 + (b / a)x + (c / a) = (x – x1)(x – x2),
где X1 и X2 — корни квадратного уравнения ax2 + bx + c =0. Раскроем скобки в правой части этого тождества.
x2 + (b / a)x + (c / a) = x2 – x1x – x2x + x1x2 = x2 – (x1 + x2)x +x1x2.
Отсюда следует, что X1 + X2 = – b / a и X1X2 = c / a. Мы доказали следующую теорему, впервые установленную французским математиком Ф. Виетом (1540 – 1603):
Теорема 1 (Виета). Сумма корней квадратного уравнения равна коэффициенту при X, взятому c противоположным знаком и делённому на коэффициент при X2; произведение корней этого уравнения равно свободному члену, делённому на коэффициент при X2.
Теорема 2 (обратная). Если выполняются равенства
X1 + X2 = – b / a и X1X2 = c / a,
то числа X1 и X2 являются корнями квадратного уравнения ax2 + bx + c = 0.
Замечание. Формулы X1 + X2 = – b / a и X1X2 = c / a остаются верными и в случае, когда уравнение ax2 + bx + c = 0 имеет один корень X1 кратности 2, если положить в указанных формулах X2 = X1. Поэтому принято считать, что при D = 0 уравнение ax2 + bx +c = 0 имеет два совпадающих друг с другом корня.
При решении задач, связанных с теоремой Виета, полезно использовать соотношения
(1 / X1) + (1/ X2)= ( X1 + X2)/ X1X2 ;
X12 + X22 = (X1 + X2)2 – 2 X1X2;
X1 / X2 + X2 / X1 = (X12 + X2 2) / X1X2 = ((X1 + X2)2 – 2X1X2) / X1X2;
X13 + X23 = (X1 + X2)(X12 – X1X2 + X22) =
= (X1 + X2)((X1 + X2)2 – 3X1X2).
Пример. Решить уравнение 2x2 + 5x – 1 = 0.
Решение. D = 25 – 42(– 1) = 33 >0;
X1 = (- 5 + Ö33) / 4; X2 = (- 5 -Ö33) / 4.
Ответ: X1 = (- 5 + Ö33) / 4; X2 = (- 5 -Ö33) / 4.
Пример. Решить уравнение x3 – 5x2 + 6x = 0
Решение. Разложим левую часть уравнения на множители x(x2 – 5x + 6) = 0,
отсюда x = 0 или x2 – 5x + 6 = 0.
Решая квадратное уравнение, получаем X1 = 2 , X2 = 3.
Ответ: 0; 2; 3.
Пример.
x3 – 3x + 2 = 0.
Решение. Перепишем уравнение, записав –3x = – x – 2x, x3 – x – 2x + 2 = 0, а теперь группируем
x(x2 – 1) – 2(x – 1) = 0,
(x – 1)(x(x + 1) – 2) = 0,
x – 1 = 0, x1 = 1,
x2 + x – 2 = 0, x2 = – 2, x3 = 1.
Ответ: x1 = x3 = 1, x2 = – 2.
Пример. Решить уравнение
Решение. Найдём область допустимых значений x:
x + 2 ¹ 0; x – 6 ¹ 0; 2x – 7 ¹ 0 или x ¹ – 2; x ¹ 6; x ¹ 3,5.
Приводим уравнение к виду (7x – 14)(x2 – 7x + 12) = (14 – 4x)(x2 – 4x – 12), раскрываем скобки.
7x3 – 49x2 + 84x – 14x2 + 98x – 168 + 4x3 – 16x2 – 48x – 14x2 + 56x + 168 = 0,
11x3 – 93x2 + 190x = 0,
x(11x2 – 93x + 190) = 0,
x1 = 0
11x2 – 93x + 190 = 0,
x2,3 = ,
т.е. x1 = 5; x2 = 38 / 11.
Найденные значения удовлетворяют ОДЗ.
Ответ: x1 = 0; x2 = 5; x3 = 38 / 11.
Пример. Решить уравнение x6 – 5x3 + 4 = 0
Решение. Обозначим y = x3, тогда исходное уравнение принимает вид
y2 – 5y + 4 = 0, решив которое получаем Y1 = 1; Y2 = 4.
Таким образом, исходное уравнение эквивалентно совокупности
уравнений: x3 = 1 или x3 = 4, т. е. X1 = 1 или X2 = 3Ö4
Ответ: 1; 3Ö4.
Пример. Решить уравнение (x3 – 27) / (x – 3) = 27
Решение. Разложим числитель на множители (по формуле разности кубов):
(x – 3)(x2 + 3x + 9) / (x – 3) = 27 . Отсюда:
x2 + 3 x + 9 = 27,
x – 3 ¹ 0;
x2 + 3 x – 18 = 0,
x ¹ 3.
Квадратное уравнение x2 + 3 x – 18 = 0 имеет корни X1 = 3; X2 = -6
(X1 не входит в область допустимых значений).
Ответ: -6
Пример. Решить уравнение
(x2 + x –5) / x + (3x) / (x2 + x – 5) = 4.
Решение. Обозначим y= (x2 + x – 5) / x, тогда получаем уравнение y + 3 / y = 4.
Преобразуем его: y + 3 / y – 4 = 0, (y2 – 4y + 3) / y = 0, отсюда
y2 – 4y + 3 = 0,
y ¹ 0
Квадратное уравнение y2 – 4y + 3 = 0 имеет корни Y1 = 1; Y2 = 3 (оба корня входят в область допустимых значений).
Таким образом корни, исходное уравнение эквивалентно (равносильно) совокупности уравнений
(x2 + x – 5) / x = 1 или (x2 + x – 5) / x = 3.
Преобразуем их:
(x2 + x – 5) / x – 1 = 0 или (x2 + x – 5) / x – 3 = 0;
x2 – 5 = 0,
x ¹ 0
или
x2 – 2x – 5 = 0,
x ¹ 0;
X1 = Ö5; X2 = – Ö5 или X3 = 1 + Ö6; X4 = 1 – Ö6
(все
найденные корни уравнения
Ответ: Ö5; – Ö5; 1 + Ö6; 1 – Ö6
Пример. Решить уравнение x(x + 2)(x + 3)(x + 5) = 72.
Решение. Перегруппируем сомножители и преобразуем полученное уравнение
(x + 2)(x + 3)(x + 5)x = 72, (x2 + 5x + 6)(x2 + 5x) = 72.
Обозначим y = x2 + 5x, тогда получим уравнение (y + 6)y = 72, или
y2 + 6y – 72 = 0.
Корни этого уравнения: Y1 = 6; Y2 = – 12.
Таким образом, исходное уравнение эквивалентно совокупности уравнений
x2 + 5x = 6 или x2 + 5x = – 12.
Первое уравнение имеет корни X1 = 1; X2 = – 6. Второе уравнение корней не имеет, так как D = 26 – 48 = – 23 < 0.
Ответ: – 6; 1.
Пример. Решить уравнение 4x2 + 12x + 12 / x + 4 / x2 = 47.
Решение. Сгруппируем слагаемые: 4(x2 + 1 / (x2)) + 12(x + 1 / x) = 47.
Обозначим y = x + 1 / x, при этом заметим, что
y2 = (x +1 / x)2 = x2 +2 + 1 / (x2),
отсюда x2 + 1 / (x2) = y2 – 2. С учётом этого получаем уравнение
4(y2 – 2) + 12y = 47, или 4y2 + 12y - 55 = 0.
Это квадратное уравнение имеет корни Y1 = 5 / 2; Y2 = – 11 / 2.
Исходное уравнение эквивалентно совокупности уравнений
x + 1 / x = 5 / 2 или x + 1 / x = – 11 / 2.
Решим их:
x + 1 / x – 5 /2 = 0 или x + 1 / x + 11 / 2 = 0;
2x2 – 5x + 2 = 0,
x ¹ 0
или
2x2 + 11x + 2 = 0,
x ¹ 0;
X1 = 2; X2 = 1 / 2 или X3 = ( - 11 + Ö105) / 4; X4 = ( -11 - Ö105) / 4
(все
найденные корни уравнения
Ответ: 2; 0,5; ( - 11 + Ö105) / 4; (-11 - Ö105) / 4.
Пример. Решить уравнение x3 – x2 – 9x – 6 = 0.
Решение. Угадаем хотя бы один корень данного уравнения. “Кандидатами” в целочисленные корни (а только их есть надежда отгадать) являются числа
±1, ±2, ±3, ±6.
Подстановкой в исходное уравнение убеждаемся, что X = -2 является его корнем.
Разделим многочлен x3 – x2 – 9x – 6 на двучлен x + 2
x3 – x2 – 9x – 6 = (x + 2)(x2 – 3x – 3) = 0.
Решив теперь уравнение x2 – 3x – 3 = 0,
получаем X2 = (3 - Ö21) / 2, X3 = (3 + Ö21) / 2.
Ответ: xÎ {-2; (3 - Ö21) / 2; (3 + Ö21) / 2}.
Пример.
x3 – x2 – 8x + 6 = 0.
Решение. Здесь an = 1, a0 = 6. Поэтому, если данное уравнение имеет рациональные корни, то их следует искать среди делителей числа 6: ±1, ±2, ±3, ±6. Проверкой убеждаемся, что x = 3, т.к. 27 – 9 – 24 + 6 = 0.
Делим (x3 – x2 – 8x + 6) на (x – 3)
Получаем: x3 – x2 – 8x + 6 = (x – 3)(x2 + 2x – 2), т.е. данное уравнение можно представить в виде (x – 3)(x2 + 2x – 2) = 0. Отсюда находим, что x1 = 3 — решение, найденное подбором, x2,3 = – 1 ± Ö3 — из уравнения x2 + 2x – 2 = 0.
Ответ: x1 = 3; x2,3 = – 1 ± Ö3.
Пример.
4x4 + 8x3 + x2 – 3x – 1 = 0.
Решение. Здесь an = 4, a0 = –1. Поэтому рациональные корни уравнения следует искать среди чисел: ± 1; ± 0,5; ± 0,25 (делители 4 есть ±1; ±2; ±4, делители (– 1) есть ± 1). Если x = +1, то 4 + 8 + 1 – 3 – 1 ¹ 0; если x = – 0,5, то
4 / 16 – 8 / 8 + 1 / 4 + 3 / 2 – 1 = 0, т.е. x = – 0,5 корень уравнения. Делим
(4x4 + 8x3 + x2 – 3x – 1) на (x + 0,5):
Данное уравнение можно представить в виде: (x + 0,5)(4x3 + 6x2 – 2x – 2) = 0.
Отсюда x1 = – 0,5 (решение, найденное подбором) и 4x3 + 6x2 – 2x – 2 = 0, т.е. 2x3 + 3x2 – x – 1 = 0. Аналогично находим корень этого уравнения: x = – 0,5. Снова делим.
Имеем: (x + 0,5)(2x2 + 2x – 2) = 0. Отсюда x2 = – 0,5 и x3,4 = (– 1 ± Ö5) / 2.
Ответ: x1 = x2 = – 0,5; x3,4 = (– 1 ± Ö5) / 2.
Замечание: зная, что x = – 0,5, можно не заниматься делением, а просто выделить за скобки множитель (x + 0,5). Из 2x3 + 3x2 – x – 1 = 0 следует:
2x3 + 3x2 – x – 1 = 2x3 + x2 +2x2 + x – 2x – 1 = 2x2(x + 0,5) + 2x(x + 0,5) – 2(x+0,5) =
Информация о работе Исследование элементарных способов решения рациональных уравнений