Формирование культуры математических вычислений на уроках математики в 5 классе

Автор: Пользователь скрыл имя, 11 Октября 2014 в 17:40, курсовая работа

Краткое описание

Целью данной курсовой работы является исследование существующих методов и приемов формирования вычислительной культуры у школьников 5 класса.
Объектом исследования является математическое образование в средней образовательной школе.
Предмет исследования – процесс формирования вычислительной культуры у учащихся 5 класса.
В соответствии с целями работы необходимо решить следующие задачи:
Проанализировать учебную и научно - методическую литературу по теме исследования.
Выявить психологические особенности личности учащихся 5 классов.
3. Выбрать наиболее эффективные методы и средства повышения вычислительной культуры учащихся.
4. Разработать фрагменты уроков для 5 классов, направленных на формирование культуры математических вычислений.

Оглавление

Введение 3
Глава 1. Теоретические основы формирования культуры математических вычислений на уроках математики в 5 классе 5
1.1 Компоненты вычислительной культуры 5
1.1.1 Способы организации вычислительной деятельности 8
1.1.2 Навыки вычислений с рациональными числами 9
1.1.3 Умение рационализировать вычисления 10
1.1.4 Прикидка результата вычисления 11
1.1.5 Устные вычисления 11
1.2 Психолого-педагогическая характеристика учащихся 5 классов 14
Глава 2. Методические аспекты формирования культуры математических вычислений на уроках математики в 5 классе 16
2.1 Приемы устных вычислений 16
2.1.1 Формы устной работы 16
2.1.2 Старинные способы умножения 18
2.1.3 Система задач для умственного счета С.А. Рачинского 21
2.1.4 Система быстрого счёта по Я. Трахтенбергу 23
2.2 Реализация методических рекомендаций по формированию культуры математических вычислений в 5 классах 28
Заключение 33
Список используемой литературы 34
Приложения 36

Файлы: 1 файл

Формирование культуры математических вычислений.doc

— 677.00 Кб (Скачать)

Приведем пример:

8,6+3,9+4,7–3,9–4,7=(3,9–3,9)+(4,7–4,7)+8,6=8,6

В подобном задании, пользуясь переместительным законом сложения, учащиеся должны отыскать пары чисел, дающие в сумме ноль. И в итоге вычисления будут максимально простыми.

Ученики должны, прежде всего, научиться не только рационально вычислять, но и «рационально мыслить и рассуждать», т.е. искать более удобные способы не исключительно в вычислениях, но и при решении задач, при составлении уравнений, при их решении, при преобразовании различных выражений. Часто, прежде чем приступить непосредственно к вычислениям, нужно просто заметить, что то или иное выражение можно преобразовать, упростить, а лишь после этого выполнять действие. [10]

 

1.1.4 Прикидка результата вычисления

 

Важным элементом вычислительной культуры является умение выполнять прикидку и оценку результата вычислений. В основе этого умения лежит умение округлять числа.

В ряде случаев необходимо установить, имеет ли решение некоторая задача при указанных значениях параметров, сравнить между собой значения нескольких выражений.

Умение, не производя громоздких вычислений, оценивать результат вычислений, является одним из главных критериев математической культуры учащегося, так как основывается не только на знании конкретного теоретического материала, но в первую очередь и на умении применять теоретический материал в самых разнообразных, нестандартных ситуациях. Научить этому можно, только проводя систематическую работу по выработке соответствующих умений буквально на каждом уроке. [3]

 

1.1.5 Устные вычисления

 

Не менее важным элементом математической культуры является устный счет, который имеет широкое применение в обыденной жизни; он развивает сообразительность учащихся, ставя их перед необходимостью подбирать приемы вычислений, удобные для данного конкретного случая, кроме того, устный счет облегчает письменные вычисления. [1]

      Беглость в устных вычислениях достигается достаточным количеством упражнений. Ввиду этого в школе почти каждый урок начинается с устного счета и, кроме того, устный счет применяется во всех подходящих случаях не только на небольших числах, но также и на больших, но удобных для устного счета (например, 18000:2, 15000:4 и т. п.). 

Отмечая большое значение устных вычислений, следует в то же время признать исключительно важным создание у учащихся правильных и устойчивых навыков письменных вычислений. Успешная выработка таких навыков возможна лишь на базе хороших навыков устных вычислений.

Польза устных вычислений огромна. Применяя законы арифметических действий к устным вычислениям, дети не только повторяют их, закрепляют, но, что самое главное, усваивают их не механически, а сознательно. Сознательное усвоение законов арифметических действий – вот первая и очень ощутимая польза устных вычислений. При устных вычислениях развиваются такие ценные качества человека как внимание, сосредоточенность, выдержка, самостоятельность. [6]

При устном счёте (иногда) надо держать в уме сами числа, над которыми производятся действия, некоторые промежуточные результаты, надо помнить некоторое количество наиболее эффективных приёмов устного счёта. Следовательно, устный счёт содействует тренировке и развитию памяти. [1]

Полезно время от времени проводить математические диктанты и другие виды самостоятельных работ, в которых учащиеся, выполняя вычисления в уме, записывают только полученный ответ.

Составляя тексты математических диктантов и разрабатывая тексты самостоятельных работ, предназначенных для тренировки в устном счете, следует определить примерный уровень требований, который будет предъявлен к навыкам устных вычислений. Например, в упражнениях на сложение и вычитание целых чисел и десятичных дробей можно ограничиться данными, содержащими не более двух значащих цифр; при умножении – произведением однозначного и двузначного чисел; при делении – заданиями, не приводящими к бесконечным десятичным дробям (ели не ставится задача найти приближенного значения частного), где данные имеют не более двух значащих цифр. [7]

Для устного счета могут быть предложены и несложные упражнения, содержащие несколько действий. Например:

«Число 17 умножить на 6, к полученному произведению прибавить 48 и результат разделить на 25»;

«Из квадрата дроби вычесть 1, полученное число умножить на 8 и к полученному результату прибавить 4». [11]

Таким образом, на уроке математики формирование устных вычислительных навыков занимает большое место. Овладение навыками устных вычислений имеет большое образовательное, воспитательное и практическое значение:

- образовательное значение: устные  вычисления помогают усвоить  многие вопросы теории арифметических  действий, а также лучше понять  письменные приемы;

- воспитательное значение: устные  вычисления способствуют развитию  мышления, памяти, внимания, речи, математической  зоркости, наблюдательности и сообразительности;

- практическое значение: быстрота  и правильность вычислений необходимы  в жизни, особенно когда письменно выполнить действия не представляется возможным. [7]

Таким образом, при рассмотрении компонентов вычислительной культуры были выделены особенности каждого из них, но при этом следует сказать о том, что все эти компоненты неразрывно связаны. Развивая у учащихся приемы одного из компонентов, нельзя забывать и об остальных. Так, например, устный счет приучает к рациональным вычислениям, помогает сопоставлять, сравнивать показатели, прикидывать в уме результат действий.

Кратко описав каждый из компонентов, в следующем параграфе рассмотрим как влияет на школьников развитие вычислительной культуры с точки зрения психологии и педагогики, учитывая возрастные особенности учеников 5 классов.

 

1.2 Психолого-педагогическая характеристика учащихся 5 классов

 

Рассматривая особенности учебной деятельности и умственное развитие подростка, В.А. Крутецкий отмечает [16], что в процессе овладения основами наук не только обогащается жизненный опыт и расширяется кругозор, но и формируются и развиваются интересы подростков. По сравнению с младшим школьным возрастом уровень интересов у подростков гораздо шире.

В этот период подростку становится интересно многое, далеко выходящее за рамки его повседневной жизни. Его начинают интересовать вопросы прошлого и будущего, проблемы войны и мира, жизни и смерти, экологические и социальные темы, возможности познания мира, инопланетяне, ведьмы и гороскопы. Обратим внимание на поверхностность, разбросанность этих проявлений любознательности, а также на практически полное отсутствие связи их со школьной программой.

Нельзя не заметить, что обучение вычислениям вносит специфический вклад в развитие основных психических функций учащихся, способствуя развитию речи, внимания, памяти. Вычисления – основа для формирования умений пользоваться алгоритмами, логическими рассуждениями. [6]

Каждый учитель знает, как трудно дети воспринимают язык математики на слух. У учащихся 5 классов основным является наглядно образное мышление. Слышать и слушать учащихся нужно учить. Следовательно, школьников нужно научить слышать и понимать язык математики.

Формирование вычислительных умений и навыков – это сложный длительный процесс, его эффективность зависит от индивидуальных особенностей ребенка, уровня его подготовки и организации вычислительной деятельности. [16]

На современном этапе развития образования необходимо выбирать такие способы организации вычислительной деятельности школьников, которые способствуют не только формированию прочных вычислительных умений и навыков, но и всестороннему развитию личности ребенка.

При выборе способов организации вычислительной деятельности необходимо ориентироваться на развивающий характер работы, отдавать предпочтение обучающим заданиям. Используемые вычислительные задания должны характеризоваться разнообразием (вариативностью) формулировок, неоднозначностью решений, выявлением разнообразных закономерностей и зависимостей, использованием различных моделей (предметных, графических, символических), что позволяет учитывать индивидуальные особенности ребенка, его жизненный опыт, предметно-действенное и наглядно-образное мышление и постепенно водить ребенка в мир математических понятий, терминов и символов.

Устные вычисления имеют большое образовательное, воспитательное и практическое и чисто методическое значение. Помимо того практического значения, устный счет всегда рассматривался методистами как одно из лучших средств углубления приобретаемых детьми на уроках математики теоретических знаний. [3]

 

Глава 2. Методические аспекты формирования культуры математических вычислений на уроках математики в 5 классе

 

2.1 Приемы устных вычислений

 

Устные упражнения активизируют мыслительную деятельность учащихся, развивают внимание, наблюдательность, память, речь, быстроту реакции, повышают интерес к изучаемому материалу.

Прививая любовь к устным вычислениям, учитель помогает ученикам активно действовать с учебным материалом, пробуждает у них стремление совершенствовать способы вычислений и решения задач, заменяя менее рациональные более современными. А это важнейшее условие сознательного освоения материала.

 Устный счет имеет широкое  применение в обыденной жизни; он развивает сообразительность  учащихся, ставя их перед необходимостью  подбирать приемы вычислений, удобные  для данного конкретного случая, кроме того, устный счет облегчает письменные вычисления. [8]

Отмечая большое значение устных вычислений, следует в то же время признать исключительно важным создание у учащихся правильных и устойчивых навыков письменных вычислений. Успешная выработка таких навыков возможна лишь на базе хороших навыков устных вычислений.

Устные упражнения могут быть разнообразны по форме, содержанию и степени сложности, могут носить тренировочный, контролирующий или обобщающий характер.

 

2.1.1 Формы устной работы

 

Опишем коротко самые известные формы устной работы:

Беглый счёт.

Учитель показывает карточку с заданием и тут же громко прочитывает её. Учащиеся устно выполняют действия и сообщают ответы. Карточки быстро сменяют друг друга. Последние задания предлагаются без карточек, только устно.

«Равный счет».

Учитель на доске записывает упражнение с ответом. Ученики должны придумать свои примеры с тем же ответом. Их примеры на доске не записываются. Ребята должны на слух воспринимать названные числа и определять верно ли составлен пример.

«Счет-дополнение».

Учитель записывает на доске какое-то число, допустим, 1,5. Затем он называет число, которое меньше, чем 1,5. Ученики в ответ должны назвать другое число, дополняющее данное до 1,5. Те числа, которые называет учитель, и ученики на доске не записываются. Этим обеспечивается большая тренировка в запоминании чисел.

«Эстафета».

Первое задание записано полностью, а в остальных пустое окошечко вместо первого числа. Что должно стоять в нем, ученик узнает тогда, когда решит предыдущий пример. В такой игре все должны быть предельно внимательны, поскольку ошибка одного зачеркнёт старания всех остальных.

«Домино».

Каждому примеру из левого столбика нужно сопоставить ответ из правого.

Кроссворды.

Важно не только хорошо научиться считать, но и знать математические термины. Не забыть их помогают математические кроссворды, заданиями в которых служат определения каких-либо понятий. [10]

С активным внедрением ИКТ в учебный процесс появилась замечательная возможность разнообразить свои уроки, сделать их ярче и интереснее. Устный счет превратить в увлекательную игру.

2.1.2 Старинные способы умножения

 

Русский крестьянский способ умножения.

В России 2-3 века назад среди крестьян некоторых губерний был распространен способ, который не требовал знание всей таблицы умножения. Надо было лишь уметь умножать и делить на 2. Этот способ получил название крестьянского (существует мнение, что он берет начало от египетского). [18]

Пример: умножим 47 на 35,

- запишем числа на одной строчке, проведём между ними вертикальную  черту;

- левое число будем делить на 2, правое – умножать на 2 (если при делении возникает остаток, то остаток отбрасываем);

- деление заканчивается, когда  слева появится единица;

- вычёркиваем те строчки, в которых  стоят слева чётные числа;

- далее оставшиеся справа числа складываем – это результат;


47             35

23             70

11             140

5             280

2             560


1             1120

Ответ: 35 + 70 + 140 + 280 + 1120 = 1645.

Метод «решетки».

1). Выдающийся арабский математик  и астроном Абу Абдалах Мухаммед Бен Мусса аль - Хорезми жил и работал в Багдаде. «Аль - Хорезми» буквально означает «из Хорезми», т. е. родился в г. Хорезме. Учёный работал в Доме мудрости, где были библиотека и обсерватория, здесь работали почти все крупные арабские учёные.

Сведений о жизни и деятельности Мухаммеда аль - Хорезми очень мало. Сохранились лишь две его работы – по алгебре и по арифметике. В последний из этих книг даны четыре правила арифметических действий, почти такие же, что используются в наше время. [15]

2). В своей «Книге об индийском счете» учёный описал способ, придуманный в Древней Индии, а позже названный «методом решётки» (он же «ревность»). Этот метод даже проще, чем применяемый сегодня. [18]

Информация о работе Формирование культуры математических вычислений на уроках математики в 5 классе