Автор: Пользователь скрыл имя, 04 Апреля 2013 в 12:47, курсовая работа
В наше время тема развития альтернативных способов получения энергии как нельзя более актуальна. Традиционные источники стремительно иссякают и уже через каких-нибудь пятьдесят лет могут быть исчерпаны. И уже сейчас энергетические ресурсы довольно дороги и в значительной мере влияют на экономику многих государств.
Всё это заставляет жителей нашей планеты искать новые способы получения энергии. Преобразование солнечной энергии в электричество является одним из самых перспективных и активно развиваемых направлений возобновляемой энергетики. Солнечная энергия широко доступна, обладает практически безграничными ресурсами, при ее фотоэлектрическом преобразовании не происходит загрязнения окружающей среды.
Введение………………………………………………………………………….5.
Глава 1. Устройство и принцип работы солнечных элементов.
1.1. История открытия солнечной энергии…………………………………..7.
2.1. Способы получения электричества и тепла из солнечного излучения..12.
2.2. Фотоэлемент. Физический принцип работы фотоэлемента……………13.
2.3. Конструкция солнечного элемента………………………………………14.
2.4. Виды солнечных элементов………………………………………………16.
2.4.1. Фотоэлементы первого поколения – на основе пластин кристаллического кремния…………………………………………………………………………………..17.
2.4.2. Фотоэлементы второго поколения – на основе тонких пленок полупроводников………………………………………………………………………..21.
Фотоэлементы на основе аморфного кремния
Фотоэлементы на основе кристаллических пленок кремния
Фотоэлементы на основе кристаллических пленок CdTe
Фотоэлементы на основе кристаллических пленок CuInSe2 (CIS)
Фотоэлементы на основе кристаллических пленок III-V групп
Фотоэлементы на основе органических материалов
Фотоэлементы на красителях
2.4.3. Фотоэлементы третьего поколения…………………………………………31.
2.5. Потери в солнечных элементах и пути их уменьшения…………….33.
Глава 2. Устройство и принцип работы солнечных батарей. Применение.
2.1. Характеристики и устройство солнечных батарей………………….35.
2.2. Элементы солнечных батарей и дополнительные компоненты……38.
2.2.1. Регуляторы отбора мощности батареи………………………………...……38.
2.2.2. Аккумуляторы в системе солнечной батареи………………………………39.
2.2.3. Регуляторы зарядки и разрядки аккумуляторов……………………………42.
2.2.4. Инверторы………………………………………………………………….…42.
2.3. Применение солнечных батарей…………………………………......44.
2.4. Перспективы использования солнечных батарей…………………..52.
Глава 3. Методы исследований солнечных батарей.
3.1. Модели расчетов мощности солнечных батарей……………………56.
3.1.1. модель КПД;
3.1.2. модель поправочных коэффициентов;
3.1.3. модель физическая;
3.1.4. модель статистическая.
3.2. Анализ работы солнечных батарей в зависимости от природных факторов……………………………………………………………………..59.
3.2.1. Солнечная радиация……………………………………………………........59.
3.2.2. Температура воздуха и скорость ветра……………………………………..60.
3.2.3. Влажность и давление воздуха……………………………………………...61.
3.3. Детальный расчет проектирования солнечной батареи со всеми теоритическими и математическими выкладками и при помощи пакет программ моделирования DesignLab и Matlab Simulink…………….........62.
3.3.1. Алгоритм построения модели СБ……………………………………………63.
3.3.2. Математическая модель солнечного элемента при протекании постоянного тока………………………………………………………………………………………….64.
3.3.3. Определение профиля освещенности………………………………………..66.
3.3.4. Определение необходимой емкости и выбор аккумуляторной батареи…..74.
3.3.5. Определение минимального времени зарядки аккумуляторной батареи…76.
3.3.6. Определение профиля нагрузки……………………………………………..77.
3.3.7. Расчет эффективного значения плотности потока солнечного излучения.79.
3.3.8. Определение факторов, влияющих на выходную мощность солнечных элементов…………………………………………………………………………………..81.
3.3.9. Определение числа последовательно и параллельно соединенных элементов солнечной батареи…………………………………………………………………………85.
Выводы…………………………………………………………………88.
Список использованной литературы………………………………89.
Полупроводниковые материалы на основе соединений групп III (Al, Ga, In) и V (N, P As, Sb) известны с 1950 года, а в начале 1960-х годов были созданы и первые фотоэлементы на основе арсенида галлия, которые тут же нашли применение в космических исследованиях благодаря устойчивости к космическому излучению и высокой эффективности фотопреобразования. Из всех соединений групп III-V наиболее широко применяются InP и GaAs, поскольку они имеют почти идеальную ширину запрещенной зоны в 1,4 эВ. Наибольшая эффективность на структурах с одним переходом была достигнута на тонкопленочных устройствах, сформированных методом газофазной эпитаксии: 25,8% для GaAs и 21,9% для InP.
Недостатком устройств на пленках соединений III-V групп является высокая стоимость подложек, обеспечивающих эпитаксиальный рост этих материалов. Кроме этого, эффективность фотопреобразования пленок очень чувствительна к примесям и структурным дефектам, что не позволяет упростить технологию их осаждения и снизить стоимость производства ячеек. Выход их этой ситуации: использовать ячейки с несколькими переходами, обеспечивающими более полное поглощение солнечного спектра, а также использовать концентрирование солнечной энергии с большой площади на небольшой фотоэлемент. В этом случае вместо дорогостоящего фотоэлемента используется существенно более дешевое концентрирующее устройство, например, линза Френеля. В результате стоимость фотоэлемента снижается пропорционально степени концентрирования солнечного излучения. Современный рекорд эффективности фотопреобразования, достигнутый на структуре с тремя переходами при концентрировании в 364 раза, составляет 41,6%. Увеличение количества гетеропереходов больше 3 приводит к значительному удорожанию фотоэлемента, поэтому основной рынок для высокоэффективных устройств с четырьмя и более гетеропереходами – аэрокосмическая промышленность.
Фотоэлементы на основе органических материалов.
В последнее время солнечные элементы на основе органических материалов вызывают все больший интерес как исследователей, так и компаний, производящих солнечные элементы. Это связано с постоянным ростом эффективности этих устройств. Так в декабре 2009 года компания Solarmer (США) сообщила о фотоэффективности в 7,9%, а уже в июле 2010 года эта же компания заявила о новом рекорде в 8,13%. Несмотря на то, что эффективность фотопреобразования органических фотоэлементов выглядит довольно скромно по сравнению с неорганическими фотоэлементами, однако эти устройства обладают целым рядом положительных свойств, благодаря которым они составляют реальную конкуренцию неорганическим элементам. К этим свойствам относятся малый расход и низкая стоимость материалов, их экологическая безопасность и дешевая утилизация, очень низкая стоимость производства, гибкость модулей и связанное с этим удобство транспортировки и монтажа. Благодаря этому компания Solarmer заявила, что в ближайшее время она достигнет стоимости электроэнергии, производимой органическими элементами, в 0,12-0,15 $/кВт·ч или <1$/Вт, что соответствует лучшим образцам неорганических тонкопленочных фотоэлементов второго поколения.
Органические полупроводники могут быть как мономерами, например, красители, так и полимерами. Допирование органических полупроводников может быть осуществлено введением посторонних атомов или молекул. Например, р-типа полупроводники получают вводя галогены, нитрогруппу, органические молекулы, такие как 2,4,7-тирнитрофлуоренон или орто-хлоранил, а также полупроводники с большим сродством к электрону: фуллерен или диамид пирилена. n-типа проводимость можно получить вводя щелочные металлы или полупроводники с низким потенциалом ионизации.
Простейшей архитектурой для полимерного фотоэлемента является планарная гетероструктура, в которой на пленку фотоактивного полимера (донор) наносится пленка электронного акцептора, на которые с двух сторон наносятся электроды. В настоящее время в качестве фотоактивного материала используются полимеры с сопряженными С-С связями, модифицированные фуллеренами. В полимерных полупроводниках, в отличие от неорганических полупроводников, поглощенный фотон генерирует экситон, т.е. электрон-дырочную пару, связанную кулоновскими силами. Эта электронейтральная квазичастица диффундирует к донорно-акцепторной границе, где происходит ее диссоциация на свободные электрон и дырку, дающие вклад в фототок. Типичная длина диффузии экситонов в органических полупроводниках составляет 1-10 нм. Такой же толщины должна быть и пленка фотоактивного полимера, однако при такой толщине эта пленка имеет очень низкий коэффициент оптического поглощения. Одним из способов решения этой парадигмы является использование объемных гетеропереходов, когда донорный и акцепторный материалы образуют фазово-разделенную систему, например, при расслоении раствора полимеров или при деполимеризации раствора блоксополимера с последующей полимеризацией двух фаз из составляющих его мономерных блоков, например, при упорядочении раствора блоксополимеров. Варьируя материалы, растворители, их концентрации и условия процесса, можно получать взаимопроникающие системы фаз с характерным размером 1-10 нм. Другим решением является создание упорядоченных гетероструктур. Наиболее часто эта концепция реализуется в так называемых гибридных, т.е. органических/неорганических структурах, например, когда фотоактивный полимер заполняет поры TiO2, или наночастицы кремния заполняют полимерную матрицу, образуя перколяционную систему, или структуру из наностержней InP, выращенных на проводящей подложке, заполняют полимером.
Недостатком фотоэлементов на основе органических материалов, помимо невысокой эффективности фотопреобразования, является проблема стабильности свойств, присущая сопряженным полимерам.
Фотоэлементы на красителях.
Фотоэлементы на красителях также принадлежат к тонкопленочным солнечным элементам. Этот тип фотоэлементов был изобретен в 1991 году швейцарским ученым Гретцелем (Grätzel), и поэтому их еще называются «ячейка Гретцела». Первая ячейка Гретцела состояла из анода (толщиной 10 мкм) в виде высокопористого нанокристаллического диоксида титана, поверхность которого покрыта мономолекулярным слоем красителя и который был сформирован на стеклянной подложке, покрытой слоем прозрачного проводящего оксида. Пористый анод пропитывался жидким йодным электролитом. Катодом являлась платина.
Ячейка Гретцела работает следующим образом. Свет, проходя через прозрачную подложку, поглощается фотоактивным красителем. Электроны, возбужденные светом в красителе, переходят в TiO2 и диффундируют к прозрачному проводящему электроду под действием градиента их концентрации. Электролит замыкает электрическую цепь и обеспечивает транспорт электронов от катода (Pt) к красителю, где они рекомбинируют с дырками, оставшимися от мигрировавших фотоэлектронов. Таким образом, в ячейке Гретцеля полупроводник (TiO2) используется только для транспорта фотоэлектронов, которые генерируются в фоточувствительном красителе. Этим ячейка Гретцела принципиально отличается от обычных полупроводниковых фотоэлементов, в которых и транспорт, и генерация фотоэлектронов происходят в объеме полупроводника.
Недостатками ячейки Гретцела являются высокая коррозионная активность электролита и высокая стоимость платины. Однако эти проблемы не являются фатальными и могут быть найдены эффективные решения для них. Например, вместо Pt уже предложено использовать CoS, также предложены менее агрессивные органические электролиты.
В настоящее время рекордная эффективность фотопреобразования ячеек на красителях составляет 11,1%, что, учитывая невысокую стоимость используемых материалов и простоту технологии, делает эти фотоэлементы привлекательными для массового применения.
Постоянно ведутся исследования по поиску новых более дешевых и/или более эффективных материалов, что позволяет надеяться на повышение эффективность этих структур. Кроме этого обычного «эволюционного» пути эффективность фотопреобразования можно еще существенно повысить, если использовать тандемные структуры. Стандартная ячейка Гретцела работает как фотоанод, когда фототок возникает в результате фотогенерации электронов в фотоактивном красителе. Аналогично можно создать фотокатод, когда фотоактивный краситель генерирует дырки, или, другими словами, фотовозбужденный краситель индуцирует перенос электрона из р-типа полупроводника в краситель. Если объединить две такие структуры, работающие как фотоанод и фотокатод, в один элемент, то эффективность фотопреобразования может быть значительно повышена. Работы в этом направлении ведутся, но пока эффективность таких тандемных структур ниже, чем у стандартной ячейки Гретцела n-типа, поскольку существующие ячейки р-типа имеют небольшой фототок, являющийся лимитирующим фактором для всей структуры.
2.4.3. Фотоэлементы третьего поколения.
Фотоэлементы третьего поколения – это устройства, обеспечивающие высокий коэффициент фотопреобразования при небольшом расходе материалов. Цель разработки этих элементов – снизить стоимость электроэнергии ниже 0,5$/Вт (желательно ниже 0,2$/Вт). Способ реализации этой задачи – существенно увеличить эффективность фотопреобразования при сохранении (или незначительном повышении) стоимости производства и издержек на утилизацию и экологическую безопасность. Для осуществления этой концепции наиболее подходящими являются тонкопленочные технологии.
Наиболее существенными механизмами, понижающими эффективность фотоэлементов с одним гетеропереходом, являются неполное поглощение солнечного спектра (в фототок дают вклад только фотоны с энергией, превышающей ширину запрещенной зоны) и термализация фотоэлектронов, возбужденных фотонами с энергией, существенно превышающей ширину запрещенной зоны полупроводника. Два этих механизма ответственны за потерю почти 50% солнечной энергии. Устранить эти потери возможно несколькими способами. Во-первых, за счет более эффективного использования солнечного спектра. Для этого можно использовать нескольких гетеропереходов с разной шириной запрещенной зоны, максимально перекрывающих солнечный спектр. Эти гетеропереходы могут быть объединены в одну ячейку – так называемые «тандемные» солнечные элементы. Сюда относятся рассмотренные выше гетеропереходы: из аморфного кремния, из халькопиритов, на основе соединений III-V групп или на красителях. Также гетеропереходы могут быть в виде индивидуальных элементов, но каждый использует соответствующую часть солнечного спектра. Можно и трансформировать широкий солнечный спектр в спектр с узким распределением фотонов по энергии вблизи оптимального для конкретного полупроводника значения, например, 1,1 эВ для кремния. Кроме этого, возможна многоэлектронная генерация, когда один фотон с высокой энергией генерирует несколько электронов. Возможно реализовать и «многофотонные» процессы – когда несколько фотонов низкой энергии (инфракрасных) генерируют один электрон.
Во-вторых, за счет использования «горячих» фотоэлектронов до их термализации – «ячейки на горячих носителях». С учетом всех этих факторов эффективность фотопреобразования при нормальной освещенности, т.е. без концентрирования солнечного излучения, составляет примерно 66% - термодинамический предел при освещенности, равной 1 солнцу. Абсолютный термодинамический предел, определяемый циклом Карно (при максимально возможной концентрации солнечной энергии на Земле в 46200 раз) соответствует эффективности фотопреобразования примерно 93%. Элементы третьего поколения используют как эти, так и некоторые другие принципы. В настоящее время проводятся интенсивные исследования, направленные на выяснение физических основ функционирования различных типов фотоэлементов третьего поколения, которые позволяют надеяться на их реализацию в конкретных высокоэффективных устройствах.
2.5. Потери в солнечных элементах и пути их уменьшения.
Основные необратимые потери энергии в ФЭП связаны с:
Для уменьшения всех видов
потерь энергии в ФЭП разрабатываются,
и успешно применяется