Автор: Пользователь скрыл имя, 04 Апреля 2013 в 12:47, курсовая работа
В наше время тема развития альтернативных способов получения энергии как нельзя более актуальна. Традиционные источники стремительно иссякают и уже через каких-нибудь пятьдесят лет могут быть исчерпаны. И уже сейчас энергетические ресурсы довольно дороги и в значительной мере влияют на экономику многих государств.
Всё это заставляет жителей нашей планеты искать новые способы получения энергии. Преобразование солнечной энергии в электричество является одним из самых перспективных и активно развиваемых направлений возобновляемой энергетики. Солнечная энергия широко доступна, обладает практически безграничными ресурсами, при ее фотоэлектрическом преобразовании не происходит загрязнения окружающей среды.
Введение………………………………………………………………………….5.
Глава 1. Устройство и принцип работы солнечных элементов.
1.1. История открытия солнечной энергии…………………………………..7.
2.1. Способы получения электричества и тепла из солнечного излучения..12.
2.2. Фотоэлемент. Физический принцип работы фотоэлемента……………13.
2.3. Конструкция солнечного элемента………………………………………14.
2.4. Виды солнечных элементов………………………………………………16.
2.4.1. Фотоэлементы первого поколения – на основе пластин кристаллического кремния…………………………………………………………………………………..17.
2.4.2. Фотоэлементы второго поколения – на основе тонких пленок полупроводников………………………………………………………………………..21.
Фотоэлементы на основе аморфного кремния
Фотоэлементы на основе кристаллических пленок кремния
Фотоэлементы на основе кристаллических пленок CdTe
Фотоэлементы на основе кристаллических пленок CuInSe2 (CIS)
Фотоэлементы на основе кристаллических пленок III-V групп
Фотоэлементы на основе органических материалов
Фотоэлементы на красителях
2.4.3. Фотоэлементы третьего поколения…………………………………………31.
2.5. Потери в солнечных элементах и пути их уменьшения…………….33.
Глава 2. Устройство и принцип работы солнечных батарей. Применение.
2.1. Характеристики и устройство солнечных батарей………………….35.
2.2. Элементы солнечных батарей и дополнительные компоненты……38.
2.2.1. Регуляторы отбора мощности батареи………………………………...……38.
2.2.2. Аккумуляторы в системе солнечной батареи………………………………39.
2.2.3. Регуляторы зарядки и разрядки аккумуляторов……………………………42.
2.2.4. Инверторы………………………………………………………………….…42.
2.3. Применение солнечных батарей…………………………………......44.
2.4. Перспективы использования солнечных батарей…………………..52.
Глава 3. Методы исследований солнечных батарей.
3.1. Модели расчетов мощности солнечных батарей……………………56.
3.1.1. модель КПД;
3.1.2. модель поправочных коэффициентов;
3.1.3. модель физическая;
3.1.4. модель статистическая.
3.2. Анализ работы солнечных батарей в зависимости от природных факторов……………………………………………………………………..59.
3.2.1. Солнечная радиация……………………………………………………........59.
3.2.2. Температура воздуха и скорость ветра……………………………………..60.
3.2.3. Влажность и давление воздуха……………………………………………...61.
3.3. Детальный расчет проектирования солнечной батареи со всеми теоритическими и математическими выкладками и при помощи пакет программ моделирования DesignLab и Matlab Simulink…………….........62.
3.3.1. Алгоритм построения модели СБ……………………………………………63.
3.3.2. Математическая модель солнечного элемента при протекании постоянного тока………………………………………………………………………………………….64.
3.3.3. Определение профиля освещенности………………………………………..66.
3.3.4. Определение необходимой емкости и выбор аккумуляторной батареи…..74.
3.3.5. Определение минимального времени зарядки аккумуляторной батареи…76.
3.3.6. Определение профиля нагрузки……………………………………………..77.
3.3.7. Расчет эффективного значения плотности потока солнечного излучения.79.
3.3.8. Определение факторов, влияющих на выходную мощность солнечных элементов…………………………………………………………………………………..81.
3.3.9. Определение числа последовательно и параллельно соединенных элементов солнечной батареи…………………………………………………………………………85.
Выводы…………………………………………………………………88.
Список использованной литературы………………………………89.
К элементам первого поколения можно отнести и элементы, использующие толстые (~100-300 мкм) листы кремния, полученные «бесслитковым» способом прямо из расплава кремния. В соответствии с одним способом, называемым «полоса со струнами» (the String Ribbon process), две струны (натянутых волокна) из высокотемпературного диэлектрического материала протягиваются через маленькие отверстия в дне графитового тигля с расплавом кремния. Струны ограничивают полоску кремния, стабилизируют ее край и позволяют проводить непрерывное вытягивание полоски из расплава при постоянном пополнении кремния в тигле. Обычно ширина полоски составляет около 8 см, а толщина 100-150 мкм. Одновременно из одного тигля можно вытягивать несколько полосок. Струны сохраняются в полоске на протяжении всего процесса изготовления солнечного модуля. Качество получаемого кремния аналогично мультикристаллическому материалу и позволяет производить модули с эффективностью 14%. В соответствии с другим способом через расплав кремния протягивается лента из графитовой фольги, на обеих сторонах которой кристаллизуется кремний. После обрезания края ленты ее нарезают на листы необходимого размера и проводят их термоокислительную обработку, в результате которой графит выгорает и от каждой заготовки остаются два листа кремния толщиной ~150 мкм. Этот способ отличается высокой производительностью. Также широко применяется способ, состоящий в плавлении порошка или гранул кремния на высокотемпературных подложках с последующей кристаллизацией; листы кремния отделяют от подложек, которые используются многократно. Скорость процесса 3 м/мин при ширине ленты 20 см и более, толщина ленты не более 1 мм. Ленты состоят из столбчатых кристаллов, прорастающих на всю толщину ленты и имеющих размер около миллиметра. Способ отличается простотой и очень большой производительностью, но модули, изготовляемые из такого материала, имеют эффективность только около 9%.
Технология скалывания монокристаллических листов кремния.
Технология скалывания тонких листов кремния с монокристаллической пластины была впервые предложена в 1983 году. Технология состоит в создании нанопористого слоя на некоторой глубине от поверхности монокристалла кремния. Этот слой создается за счет имплантации ионов водорода (возможно также и гелия), и поэтому нанопоры заполнены водородом (гелием). В этом слое возникают механические напряжения, которые приводят к потере прочности по сравнению с объемным материалом, что позволяет отделить тонкий поверхностный лист кремния от монокристалла при небольшом механическом усилии, или при высокотемпературном нагреве, или при помощи струи воды. Поэтому этот слой называется «слой скалывания». Оставшаяся часть монокристалла может использоваться многократно. В зарубежной литературе эта технология получила название «интеллектуальное резание» (smart-cut). Этот метод нашел широкое применение в электронной промышленности и продолжает развиваться. Недостатком этого метода является использование дорогостоящих вакуумных установок ионной имплантации.
Чтобы устранить этот недостаток и снизить стоимость получаемых листов кремния, была предложена технология, в соответствии с которой слой скалывания формируется электрохимическим травлением поверхности монокристаллического кремния. Размер пор зависит от плотности тока и, варьируя его величину, можно получить высоко пористую структуру на некоторой глубине от поверхности. После этого проводят высокотемпературную обработку, в результате которой поры высокопористой структуры разрастаются, образуя собственно слой скалывания, а поверхностные поры закрываются. При этом, поскольку оставшийся (невытравленный) кремний сохранял кристаллическую структуру исходного монокристалла, то залеченная поверхность имеет высокую степень кристаллического совершенства, поэтому полученные листы называются квази-монокристаллическими. Оставшиеся в этом материале нанопоры служат центрами рассеяния света, что позволяет обойтись без формирования дополнительного светопоглощающего слоя. В настоящее время не имеется информации в литературе об изготовлении солнечных элементов на основе такого квази-монокристаллического кремния. Однако этот материал используется в качестве эпитаксиальной подложки для выращивания на ней высоко кристаллического слоя кремния методом газофазной или жидкофазной этитаксий. После формирования эпитаксиальной пленки ее вместе с квази-монокристаллическим слоем скалывают и переносят на другую более дешевую подложку. Эта технология получила название «технология переноса тонкой монокристаллической пленки» (transfer technology of thin monocrystalline film). Несколько модификаций этой технологии, также как и технологии формирования слоя скалывания, были разработаны. Солнечные элементы на этих структурах показали эффективность 13,6%, и считается реальным достигнуть 18% эффективности.
2.4.2. Фотоэлементы второго поколения – на основе тонких пленок полупроводников.
Рабочим элементом этих ячеек являются тонкие пленки полупроводников как неорганических, так и органических.
Фотоэлементы на основе аморфного кремния.
Тонкие пленки аморфного кремния наиболее часто получают методом осаждения из паровой фазы с использованием плазмы (PECVD). В качестве источника кремния используют силан или его производные. Температура осаждения 250-400оС, что позволяет использовать в качестве подложек не только металлические ленты, но также стекло и даже полимерные пленки. В случае гибких подложек, таких как металлические или полимерные ленты, осаждение может проводиться в непрерывном процессе при протяжке ленты-подложки через реактор. Эта технология отличается высокой производительностью, а пленки – соответственно низкой стоимостью.
Аморфный кремний всегда содержит водород в количестве от 5 до 20 ат. %, который блокирует оборванные связи кремния, поэтому он является гидрогенизированной формой кремния. Гидрогенизированный аморфный кремний (aSi:H) является прямозонным полупроводником с шириной запрещенной зоны 1,7 эВ и высоким коэффициентом оптического поглощения (α>105 cm-1 для фотонов с энергией Е>1,7 эВ). Это означает, что пленка толщиной всего несколько микрон поглотит большую часть солнечного излучения. При легировании пленки аморфного кремния германием ширина запрещенной зоны уменьшается, а при добавлении углерода – увеличивается. Это позволяет создавать солнечные элементы с двумя или тремя гетеропереходами, перекрывающими практически весь солнечный спектр. Эффективность фотопреобразования таких элементов достигает 12%. Недостатком является деградация физических свойств элемента под действием солнечного излучения – эффект Штеблера-Вронского (the Staebler-Wronski effect). Чтобы повысить стабильность свойств фотоэлементов в качестве полупроводника используют не аморфный кремний, но двухфазный материал, содержащий включения микро или нано кристаллов кремния в аморфной матрице, который известен как микрокристаллический или нанокристаллический кремний. Такой материал получается при добавлении водорода в реакционную смесь. При высоком содержании кристаллической фазы свойства материала все больше соответствуют свойствам мультикристаллического кремния. Помимо ячеек на основе двухфазного материала разрабатываются гибридные ячейки: аморфный Si/микрокристаллический (нанокристаллический) Si, которые в литературе называют «микро-морфные» устройства. Эти устройства обладают более высокой эффективностью и стабильностью, чем устройства на основе только аморфного кремния. Следует отметить, что пленки аморфного кремния нашли и другое применение – в качестве пассивирующего покрытия пластин монокристаллического кремния модулей первого поколения. Такое покрытие снижает поверхностную рекомбинацию носителей заряда на два порядка, что приводит к существенному повышению эффективности фотопреобразования. Эти элементы разработаны компанией Sanyo (Япония) и получили название «гетеропереходы с внутренним тонким слоем» ("Heterojunction with Intrinsic Thin layer - HIT). Компания Sanyo наладила промышленный выпуск модулей на основе HIT-структуры с эффективностью преобразования 21,5%.
Фотоэлементы на основе кристаллических пленок кремния.
Материалом альтернативным и монокристаллическому, и аморфному кремнию являются поликристаллические пленки кремния. Поликристаллический Si устойчив к воздействию солнечного излучения аналогично монокристаллическому материалу и при этом обеспечивает более высокую эффективность фотопреобразования, чем аморфный кремний. Благодаря высокой электропроводности кремния фотоэлементы на основе поликристаллического материала не требуют применения прозрачного электрода. Однако в таких элементах необходимо использовать светопоглощающий слой, поскольку оптическое поглощение в поликристаллическом кремнии намного меньше, чем в аморфном. Электрические свойства поликристаллического кремния, в частности время жизни носителей заряда, определяющие эффективность фотопреобразования, зависят от размера и ориентации кристаллитов. В настоящее время разработано несколько способов производства поликристаллических пленок кремния, например, химическое осаждение из паровой фазы c использованием горячего филамента (hot-wire CVD), или газотранспортный метод с использованием йода. Оба метода обладают высокой скоростью осаждения – до 3 мкм/мин, однако второй метод имеет некоторые преимущества: он работает при атмосферном давлении и позволяет получать крупнокристаллические пленки с размером кристаллитов 5-20 мкм. Еще один метод получения поликристаллических пленок кремния – индуцированная металлами кристаллизация аморфной пленки кремния. В отличие от первых двух методов, когда поликристаллические пленки получаются прямо в процессе осаждения, в этом методе происходит кристаллизация аморфной пленки в результате ее контакта с металлом, который ускоряет кристаллизацию. Типично процесс проводят при температурах 450-600оС и времени от 10 до 70 часов. (Средняя скорость распространения фронта кристаллизации составляет 2-3 мкм/ч при 550оС.) Оказывается, что скорость кристаллизации можно увеличить, если процесс проводить в постоянном электрическом поле умеренной напряженности. Например, при напряженности поля 80 В/см время кристаллизации при 500оС составляет всего 10 мин.
Эффект индуцирования кристаллизации аморфного кремния присущ многим металлам. Эти металлы условно разделяют на две группы: образующие эвтектику с кремнием (например: Al, Au, Ag) и образующие силициды (например: Ni, Pd). Наиболее интенсивно изучаются такие инициаторы кристаллизации, как Al и Ni, поскольку они широко применяются в технологии полупроводниковых устройств. Несмотря на то, что эффект индуцирования кристаллизации известен около 40 лет, его механизм остается еще во многом непонятным. Метод индуцированной кристаллизации позволяет получить пленки кремния высокого совершенства, состоящие из больших кристаллитов вплоть до 100 мкм в поперечнике, при этом в ряде случаев получаются текстурированные пленки кремния.
Кроме этого метода в настоящее время разрабатываются специальные методы, позволяющие получать текстурированные пленки кремния и германия: осаждение на наклонную подложку (Inclined Surface Deposition- ISD), осаждение в присутствии пучка ионов высокой энергии, направленного под определенным углом к подложке (Ion Beam Assisted Deposition - IBAD), осаждение на металлическую подложку с биаксиальной текстурой. Первые два метода отличаются универсальностью и позволяют формировать текстурированные пленки различных материалов практически на любых, в том числе поликристаллических и аморфных, подложках. Недостатками этих методов являются их большая энергозатратность и необходимость использования высокого вакуума, что делает затруднительным промышленное масштабирование этих технологий. Третий метод уже широко используется для формирования текстурированных пленок YBa2Cu3Ox. Высоко ориентированные пленки германия также были получены на биаксиально текстурированных металлических лентах. Это позволило создать солнечный модуль на основе тонких пленок соединений III-V групп с эффективностью 30%. По этой технологии в 2008 году в США организовано промышленное производство солнечных модулей (компания Wakonda).
Фотоэлементы на основе кристаллических пленок CdTe.
Теллурид кадмия является одним из перспективных материалов для производства высокоэффективных и дешевых солнечных модулей. Этот материал является прямозонным полупроводником с большим коэффициентом оптического поглощения (~105 см-1) в видимом диапазоне и имеет почти идеальную ширину запрещенной зоны (1,5 эВ) для ячеек с одним переходом. Благодаря этому пленка CdTe толщиной всего несколько микрон поглощает ~90% солнечного излучения. В настоящее время разработаны разнообразные промышленно эффективные технологии получения пленок CdTe, такие как сублимация, осаждение из аэрозоля или «мокрая» печать, рост из раствора, электроосаждение, различные физические методы испарения/осаждения. Все эти методы позволяют получать пленки CdTe большой площади с большой скоростью осаждения: ~1 м2/мин. Рекордная эффективность ячейки на основе CdTe составляет 16,5%, модуля коммерческого размера – 11%; а типичные коммерческие модули имеют эффективность 7–9%.
Ячейка на основе CdTe состоит из стеклянной подложки с нанесенным слоем прозрачного проводника (SnO2:F, In2O3 или Zn2SnO4), затем n-CdS (<100 нм), далее p-CdTe (1-3 мкм), поверх которого наносится металлический электрод (Ni-Al). Свойства этих ячеек не сильно зависят от вариаций технологических параметров получения пленок, что удобно для промышленного производства. Критическими аспектами технологии являются рекристаллизация пленок CdTe с использованием CdCl2 в качестве флюса, а также предотвращение диффузии Ni в пленку СdTe при формировании металлического электрода (для этого в состав электрода вводят небольшое количество меди).
Основными недостатками этих фотоэлементов являются экологические и медицинские проблемы, связанные с вредным влиянием кадмия. Однако проведенные исследования показывают, что все требования безопасного производства и утилизации этих фотоэлементов могут быть соблюдены при вполне умеренных затратах.
Фотоэлементы на основе кристаллических пленок CuInSe2 (CIS).
CuInSe2 является еще одним перспективным материалом для солнечных элементов. Современный рекорд эффективности для лабораторных устройств на основе CIS с добавлением Ga составляет 19,5%, что превышает эффективность элементов на поликристаллическом кремнии. Модули коммерческого размера имеют эффективность более 13%. Типичная структура ячейки на основе CIS состоит из подложки (натриево-кальциево-силикатное стекло, или гибкая подложка из нержавеющей стали или полиимида), на которую нанесен Мо (1 мкм; осаждается при комнатной температуре), затем слой Cu(In-Ga)Se2 (~1 мкм), затем CdS (~70 нм), поверх которого наносится прозрачная проводящая пленка ZnO (~350 нм). Были также изготовлены ячейки с эффективностью 18,6%, не содержащие кадмия, в которых CdS заменен на ZnS. Для получения крупнокристаллических пленок CIGS высокого совершенства на разных этапах их синтеза варьируют стехиометрию по меди и индию. Одним из ключевых аспектов технологии является присутствие натрия, для чего используют Na-содержащее стекло или натрий вводят дополнительно в виде различных солей в случае использования металлических или полимерных подложек. Недостатком этих устройств является сложность получения высококачественных пленок CIGS, обусловленная сложностью фазовой диаграммы этого четверного соединения, а также деградация свойств в результате атмосферного влияния. Для повышения надежности и ресурса работы фотоэлементов на основе пленок CIGS необходимо понять механизмы деградации их свойств и разработать эффективную технологию их герметизации для длительного использования в условиях атмосферы.
Фотоэлементы на основе кристаллических пленок III-V групп.