Автор: Пользователь скрыл имя, 23 Апреля 2014 в 21:47, реферат
Целью данной работы является изучение проблемы отношения философии и науки в контексте отечественных и зарубежных источников.
В рамках достижения поставленной цели в современной литературе по философии техники можно выделить следующие основные подходы к решению проблемы изменения соотношения науки и техники:
1) техника рассматривается как прикладная наука;
2) процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы
ВВЕДЕНИЕ
Выбранная мной тема звучит «Проблема соотношения философии и науки в эпоху высоких технологий». Актуальность работы обусловлена, с одной стороны, большим интересом к данной теме в современной науке, с другой стороны, ее недостаточной разработанностью, так как наука является, пожалуй, самым динамичным компонентом современной культуры и той необходимостью, без которой современная цивилизация не существовала бы в том виде, как она есть сейчас. Ни одна из крупнейших философских концепций XX в. не могла не выразить своего отношения к науке в целом и к тем мировоззренческим проблемам, которые она ставит.
Обсуждение мировоззренческо-философских вопросов сопровождало становление и развитие современной науки и было необходимо для осознания особенностей, как самой науки, так и цивилизации, где научное отношение к миру стало возможным.
Целью
данной работы является изучение проблемы
отношения философии и науки в контексте
отечественных и зарубежных источников.
В рамках достижения поставленной цели
в современной литературе по философии
техники можно выделить следующие основные
подходы к решению проблемы изменения
соотношения науки и техники:
1) техника рассматривается как прикладная наука;
2) процессы развития науки и техники рассматриваются как автономные, но скоординированные процессы;
3) наука развивалась, ориентируясь
на развитие технических
4) техника науки во все времена обгоняла технику повседневной жизни;
5) до конца XIX в. регулярного применения научных знаний в технической практике не было, но оно характерно для современных технических наук.
СООТНОШЕНИЕ НАУКИ И ТЕХНИКИ
В философии техники при решении проблемы соотношения науки и техники сформировались следующие основные модели:
1) Линейная, которая рассматривает технику как прикладную науку, т.е. анализирует технику в качестве простого приложения науки. Так, О. Майер считает, что границы между наукой и техникой произвольны, и что практически применимого критерия для различения науки и техники попросту не существует. В конце XX века линейная модель подверглась серьезной критике как слишком упрощенная, так как утверждает, что наука и техника представляют различные функции, выполняемые одним и тем же сообществом: за наукой признается функция производства знания, а за техникой – лишь его применение. Главное различие между наукой и техникой – лишь в широте кругозора и в степени общности проблем: технические проблемы более узки и более специфичны. Наука и техника составляют различные сообщества, каждое из которых различно осознает свои цели и систему ценностей. Сегодня линейная модель технологии как прикладной науки, т.е. модель, постулирующая линейную, последовательную траекторию – от научного знания к техническому открытию и инновации – большинством специалистов признана упрощённой.
2) Эволюционная, которая
процессы развития науки и
техники рассматривает как
a) полагает, что наука на некоторых стадиях своего развития использует технику инструментально для получения собственных результатов, или наоборот – техника использует научные результаты в качестве инструмента для достижения своих целей;
б) техника задаёт условия для выбора научных вариантов, а наука в свою очередь – технических. Первая точка зрения подчёркивает, что технический прогресс руководствуется прежде всего эмпирическим знанием, полученным в процессе развития самой техники, а не теоретическим знанием, привнесенным в нее извне научным исследованием. Вторая точка зрения рассматривает технику как прикладную науку, а прогресс в ней – в качестве простого придатка научных открытий. Такая точка зрения является односторонней. Но не менее односторонней, по-видимому, является и противоположная позиция, которая акцентирует лишь эмпирический характер технического знания. Совершенно очевидно, что современная техника немыслима без глубоких теоретических исследований, которые проводятся сегодня не только в естественных, но и в особых – технических – науках. В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или – более широко – практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме.
3) Инструментальная,
где наука рассматривается как
прикладная, ориентирующаяся на
развитие технических
4) Опережающая, рассматривающая технику науки как постоянно обгоняющую технику повседневной жизни, т.е. утверждает, что техника науки, т.е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни.
5) Технизации науки, утверждающая, что до конца XIX в. регулярного применения научных знаний в технической практике не было, но оно характерно для современных технических наук. Модель технизации науки является наиболее реалистической и исторически обоснованной точкой зрения, утверждая, что вплоть до конца XIX века регулярного применения научных знаний в технической практике не было, но это характерно для технических наук сегодня. В течение XIX века отношения науки и техники частично переворачиваются в связи со «сциентификацией» техники. Этот переход к научной технике не был, однако, однонаправленной трансформацией техники наукой, а их взаимосвязанной модификацией. Другими словами, «сциентизация техники» сопровождалась«технизацией науки».
Рассмотрим последовательно каждую из этих точек зрения.
Первая точка зрения подчеркивает, что представление о технике просто как о прикладной науке должно быть отброшено, так как роль науки в технических инновациях имеет относительное, а не абсолютное значение. Согласно этой точке зрения, технический прогресс руководствуется прежде всего эмпирическим знанием, полученным в процессе имманентного развития самой техники, а не теоретическим знанием, привнесенным в нее извне научным исследованием.
Например, американский философ техники Г. Сколимовский разделяет научный и технический прогресс. По его мнению, методологические факторы, имеющие значение для роста техники, совершенно отличны от тех факторов, которые важны для роста науки. Хотя во многих случаях технические достижения могут быть рассмотрены как базирующиеся на чистой науке, исходная проблема при этом была вовсе не технической, а когнитивной. Поэтому при исследовании технического прогресса следует исходить, с его точки зрения, не из анализа роста знания, а из исследования этапов решения технической проблемы. Рост техники выражался в виде способности производить все более и более разнообразные технические объекты со все более и более интересными характеристиками и все более и более эффективным способом.
Технику нельзя рассматривать как прикладную науку, а прогресс в ней - в качестве простого придатка научных открытий. Такая точка зрения является односторонней. Но не менее односторонней является, и противоположная позиция, которая акцентирует лишь эмпирический характер технического знания. Совершенно очевидно, что современная техника немыслима без глубоких теоретических исследований, которые проводятся сегодня не только в естественных, но и в особых - технических - науках.
В эволюционной модели соотношения науки и техники выделяются три взаимосвязанные, но самостоятельные сферы: наука, техника и производство (или - более широко - практическое использование). Внутренний инновационный процесс происходит в каждой из этих сфер по эволюционной схеме.
Для Стефана Тулмина, например, очевидно, что выработанная им дисциплинарная модель эволюции науки применима также и для описания исторического развития техники. Только в данном случае речь идет уже не о факторах изменения популяции теорий или понятий, а об эволюции инструкций, проектов, практических методов, приемов изготовления и т.д. Новая идея в технике часто ведет, как и в науке, к появлению совершенно новой технической дисциплины. Техника развивается за счет отбора нововведений из запаса возможных технических вариантов. Однако, если критерии отбора успешных вариантов в науке являются главным образом внутренними профессиональными критериями, в технике они зачастую будут внешними, т.е. для оценки новаций в технике важны не только собственно технические критерии (например, эффективность или простота изготовления), но и - оригинальность, конструктивность и отсутствие негативных последствий. Кроме того, профессиональные ориентации инженеров и техников различны, так сказать, в географическом отношении: в одних странах инженеры более ориентированы на науку, в других - на коммерческие цели. Важную роль скорости нововведений в технической сфере играют социально-экономические факторы.
По мнению этого автора, для описания взаимодействия трех автономных эволюционных процессов справедлива та схема, которую он создал для описания процессов развития науки, а именно: создание новых вариантов (фаза мутаций) - создание новых вариантов для практического использования (фаза селекции) - распространение успешных вариантов внутри каждой сферы на более широкую сферу науки и техники (фаза диффузии и доминирования). Подобным же образом связаны техника и производство.
Тулмин также отрицает, что технику можно рассматривать просто как прикладную науку. Во-первых, неясно само понятие "приложение". В этом плане законы Кеплера вполне могут рассматриваться как специальное "приложение" теории Ньютона. Во-вторых, между наукой и техникой существуют перекрестные связи и часто бывает трудно определить, находится "источник" какой-то научной или технической идеи в области науки или в сфере техники. Можно добавить, что соотношение науки и техники в разных культурах различно. В античной культуре "чистые" математика и физика развивались, не заботясь о каких-либо приложениях в технике. В древнекитайском обществе, несмотря на слабое развитие математических и физических теорий, ремесленная техника была весьма плодотворна. В конечном счете техника и ремесло намного старше, чем естествознание. Многие тысячелетия, например, обработка металла и врачебное искусство развивались без какой-либо связи с наукой. Положение изменилось лишь в последнее столетие, когда техника и промышленность действительно были революционизированы наукой. Но это не означает, по мнению Тулмина, что изменилась сама сущность техники, но лишь то, что новое, более тесное партнерство техники и науки привело к ускорению решения технических проблем, ранее считавшихся неразрешимыми.
Аналогичным образом объяснял взаимодействие науки и техники другой известный философ науки - Дерек де Солла Прайс, который пытался разделить развитие науки и техники на основе выделения различий в интенциях и поведении тех, кто занимается научным техническим творчеством. Ученый - это тот, кто хочет публиковать статьи, для техника же опубликованная статья не является конечным продуктом. Прайс определяет технику как исследование, главным продуктом которого является не публикация (как в науке), а - машина, лекарство, продукт или процесс определенного типа и пытается применить модели роста публикаций в науке к объяснению развития техники.
Таким образом, в данном случае философы науки пытаются перенести модели динамики науки на объяснение развития техники. Однако, такая процедура, во-первых, еще требует специального обоснования, и, во-вторых, необходим содержательный анализ развития технического знания и деятельности, а не поиск подтверждающих примеров для априорной модели, полученной на совершенно ином материале. Конечно, это не означает, что многие результаты, полученные в современной философии науки, не могут быть использованы для объяснения и понимания механизмов развития техники, особенно вопроса о соотношении науки и техники.
Техника науки и технические науки
Согласно третьей, указанной выше, точке зрения, наука развивалась, ориентируясь на развитие технических аппаратов и инструментов, и представляет собой ряд попыток исследовать способ функционирования этих инструментов.
Германский философ Гернот Беме приводит в качестве примера теорию магнита английского ученого Вильяма Гильберта, которая базировалась на использовании компаса. Аналогичным образом можно рассмотреть и возникновение термодинамики на основе технического развития парового двигателя. Другими примерами являются открытие Галилея и Торичелли, к которым они были приведены практикой инженеров, строивших водяные насосы. По мнению Беме, техника ни в коем случае не является применением научных законов, скорее, в технике идет речь о моделировании природы сообразно социальным функциям. "И если говорят, что наука является базисом технологии, то можно точно также сказать, что технология дает основу наукеѕ... Существует исходное единство науки и технологии Нового времени, которое имеет свой источник в эпохе Ренессанса. Тогда механика впервые выступила как наука, как исследование природы в технических условиях (эксперимента) и с помощью технических моделей (например, часов и т.п.)".
Это утверждение отчасти верно, поскольку прогресс науки зависел в значительной степени от изобретения соответствующих научных инструментов. Причем многие технические изобретения были сделаны до возникновения экспериментального естествознания, например, телескоп и микроскоп, а также можно утверждать, что без всякой помощи науки были реализованы крупные архитектурные проекты. Без сомнения, прогресс техники сильно ускоряется наукой; верно также и то, что "чистая" наука пользуется техникой, т.е. инструментами, а наука была дальнейшим расширением техники. Но это еще не означает, что развитие науки определяется развитием техники. К современной науке, скорее, применимо противоположное утверждение.
Четвертая точка зрения оспаривает предыдущую, утверждая, что техника науки, т.е. измерение и эксперимент, во все времена обгоняет технику повседневной жизни.
Этой точки зрения придерживался, например, А. Койре, который оспаривал тезис, что наука Галилея представляет собой не что иное, как продукт деятельности ремесленника или инженера. Он подчеркивал, что Галилей и Декарт никогда не были людьми ремесленных или механических искусств и не создали ничего, кроме мыслительных конструкций. Не Галилей учился у ремесленников на венецианских верфях, напротив, он научил их многому. Он был первым, кто создал первые действительно точные научные инструменты - телескоп и маятник, которые были результатом физической теории. При создании своего собственного телескопа Галилей не просто усовершенствовал голландскую подзорную трубу, а исходил из оптической теории, стремясь сделать невидимое наблюдаемым, из математического расчета, стремясь достичь точности в наблюдениях и измерениях. Измерительные инструменты, которыми пользовались его предшественники, были по сравнению с приборами Галилея еще ремесленными орудиями. Новая наука заменила расплывчатые и качественные понятия аристотелевской физики системой надежных и строго количественных понятий. Заслуга великого ученого в том, что он заменил обыкновенный опыт основанным на математике и технически совершенным экспериментом. Декартовская и галилеевская наука имела огромное значение для техников и инженеров. То, что на смену миру "приблизительности" и "почти" в создании ремесленниками различных технических сооружений и машин приходит мир новой науки - мир точности и расчета, - заслуга не инженеров и техников, а теоретиков и философов. Примерно такую же точку зрения высказывал Луис Мэмфорд: "Сначала инициатива исходила не от инженеров-изобретателей, а от ученыхѕ... Телеграф, в сущности, открыл Генри, а не Морзе; динамо - Фарадей, а не Сименс; электромотор - Эрстед, а не Якоби; радиотелеграф - Максвелл и Герц, а не Маркони и Де Форестѕ..." Преобразование научных знаний в практические инструменты, с точки зрения Мэмфорда, было простым эпизодом в процессе открытия. Из этого выросло новое явление: обдуманное и систематическое изобретение. Например, телефон на большие дистанции стал возможен только благодаря систематическим исследованиям в лабораториях Белла.