История наук и техники

Автор: Пользователь скрыл имя, 31 Марта 2011 в 18:20, реферат

Краткое описание

Техника – исторически развивающаяся совокупность создаваемых людьми средств (орудий, устройств, знаний, навыков), которые позволяют людям преобразовывать и использовать естественные и искусственные материалы, явления и процессы для удовлетворения своих потребностей.

Файлы: 1 файл

история науки и техники.docx

— 38.80 Кб (Скачать)

Содержание 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

Техника – исторически развивающаяся совокупность создаваемых людьми средств (орудий, устройств, знаний, навыков), которые позволяют людям преобразовывать и использовать естественные и искусственные материалы, явления и процессы для удовлетворения своих потребностей.

Техническая деятельность людей и технические  изделия, возникают практически  одновременно с появлением человека разумного. Техника с момента  своего возникновения являлась уникальным средством преобразования окружающей человека среды в ее природном  и социальном проявлениях. Истоки интереса к технике обнаруживаются еще  в древности. Тем не менее, люди долго  не осознавали преобразовательный характер искусственных продуктов, создаваемых  их трудом, наделяли их божественной силой. В этом смысле вся древняя техника  была магической, она позволяла человеку, в свою очередь, влиять на природные  силы. Древние греки, при всей своей  любви к философии, смотрели на ремесло  механика, как на занятие простолюдинов, не достойное истинного ученого. Появившиеся позже мировые религии  поначалу вообще отвергали науку.

Эта догма  господствовала вплоть до начала Нового времени. В XVII веке, в эпоху возрождения  знаний, инквизиция преследовала Галилея  и сожгла на костре Джордано Бруно. Изобретатели новых механизмов тоже подвергались гонениям; к примеру, в 1579 году в Данциге был казнен механик, создавший лентоткацкий станок. Причиной расправы было опасение муниципалитета, что это изобретение вызовет  безработицу среди ткачей. Понимание  роли науки пришло лишь в эпоху  Просвещения, когда Жан-Батист Кольбер, знаменитый министр Людовика XIV, создал первую Академию. С этого момента наука стала получать организационную и финансовую поддержку государства.

И только в XVII веке в эпоху разворачивания научной революции и постепенного развития промышленного производства «техника» означала совокупность всех тех средств, процедур и действий, которые относились, прежде всего, к производству орудий труда и машин. Развитие ремесла и мануфактурного производства стали одной из предпосылок развития экспериментального математизированного естествознания.

Развитие  техники как элемента производительных сил общества включает несколько  качественных переходов. Неолитическая  революция содействовала превращению  мускульной силы в орудия труда через  преобразование вещества (сырья); промышленная революция 18 века явилась переходом к крупному машинному производству за счет овладения энергией; современная научно-технической революции НТР – это начало овладения и использования информационных процессов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Развитие  фундаментальных  и отраслевых наук 

В конце  XIX - начале XX века произошла революция в естествознании, которая оказала огромное влияние на развитие общества. В этот период были сделаны крупнейшие научные открытия, которые привели к пересмотру прежних представлений об окружающем мире. Ведущую роль в науке играли страны Западной Европы, в первую очередь, Англия, Германия и Франция. В 1897 г. английский физик Дж. Томсон открыл первую элементарную частицу - электрон, входивший в состав атома. Оказалось, что атом, который раньше рассматривался как неделимая последняя мера материи, сам состоит из более мелких частиц.

Французские физики А.Беккерель, Пьер и Мария  Кюри исследовали эффект радиоактивности  и пришли к выводу, что некоторые  элементы произвольно излучают энергию. В 1901 г. М.Планк (Германия) установил, что  энергия выделяется не сплошными  потоками, как думали раньше, а отдельными пучками - квантами. В 1911 г. английский физик Э.Резерфорд предложил первую планетную теорию строения атома, согласно которой атом представляет собой  подобие Солнечной системы: вокруг положительного ядра движутся электроны - отрицательные частицы электричества. Нильс Бор (Дания) в 1913 г. ввел представление  о скачкообразном переходе электрона  с одной орбиты на другую, при  этом он получает или поглощает квант  энергии. Открытия Бора и Планка послужили  фундаментом для развития теоретической  физики.

После исследований в области квантовой  физики новый феномен не укладывался  в ньютоновское понимание вещества, материи. Объяснение этому явлению дал Л.Эйнштейн, который в своей теории относительности (1905) доказал, что материя, про странство и время взаимосвязаны. Ньютоновская картина мира с абсолютным пространством и абсолютным временем была окончательно отвергнута: по Эйнштейну, время при скоростях, близких к скорости света, замедлялось, а пространство могло искривиться. Работы ученого получили всемирную известность.

В 1869 г. великий русский ученый Д.И.Менделеев  открыл периодический закон химических элементов. Было установлено, что порядковый номер элемента в периодической  системе имеет не только химический, но и физический смысл, так как  он соответствует числу электронов в слоях оболочки того или иного  атома. Быстрыми темпами развивались  электрохимия, фотохимия, химия органических веществ естественного происхождения (биохимия) и химическая фармакология. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Развитие  генетики, биологии, медицины 

Опираясь  на достижения биологии (учение о клеточном  строении организмов) и теорию чешского натуралиста Г.Менделя о факторах, влияющих на наследственность, немецкий ученый I А.Вейсман и американский ученый Т.Морган создали основы генетики - науки о передаче наследственных признаков в растительном и животном мире. Классические исследования в области физиологии сердечно - сосудистой системы, органов пищеварения осуществил русский ученый И.П.Павлов. Изучив влияние высшей нервной деятельности на ход физиологических процессов, он разработал теорию условных рефлексов.

Достижения  биологии дали мощный толчок развитию медицины. Продолжая исследования выдающегося  французского бактериолога Л.Пастера, сотрудники Пастеровского института  в Париже впервые разработали  предохранительные прививки против ряда болезней: сибирской язвы, куриной  холеры и бешенства. Немецкий микробиолог  Р.Кох и его многочисленные ученики  открыли возбудителей туберкулеза, брюшного тифа, дифтерита, сифилиса и  создали лекарства против них.

Благодаря успехам химии медицина пополнилась  рядом новых препаратов. В лекарственном  арсенале врачей появились широко известные  ныне аспирин, пирамидон и другие средства. Врачами разных стран мира разрабатывались основы научной  санитарии и гигиены, меры по профилактике и предупреждению эпидемий. 
 
 
 
 
 

Достижения  в области техники, новых технологий, транспорта

В конце XIX столетия наступила «Эпоха электричества». Если первые машины создавались мастерами-самоучками, то теперь наука властно вмешалась  в жизнь людей – внедрение  электродвигателей было следствием достижений науки. «Эпоха электричества» началась с изобретения динамомашины; генератора постоянного тока, его создал бельгийский инженер Зиновий Грамм в 1870 году. Вследствие принципа обратимости машина Грамма могла работать как в качестве генератора, так и в качестве двигателя; она могла быть легко переделана в генератор переменного тока. В 1880-х годах работавший в Америке на фирме «Вестингауз электрик» югослав Никола Тесла создал двухфазный электродвигатель переменного тока. Одновременно работавший в Германии на фирме АЭГ русский электротехник Михаил Доливо-Добровольский создал эффективный трехфазный электродвигатель. Теперь задача использования электроэнергии упиралась в проблему передачи тока на расстояние. В 1891 году состоялось открытие Всемирной выставки во Франкфурте. По заказу организаторов этой выставки Доливо-Добровольский создал первую ЛЭП высокого напряжения и трансформатор к ней; заказ предусматривал столь сжатые сроки, что не проводилось никаких испытаний; система была включена - и сразу заработала. После этой выставки Доливо-Добровольский стал ведущим электротехником того времени, а фирма АЭГ стала крупнейшим производителем электротехники. С этого времени заводы и фабрики стали переходить от паровых машин к электродвигателям, появились крупные электростанции и линии электропередач.

Большим достижением электротехники было создание электрических ламп. За решение этой задачи в 1879 году взялся американский изобретатель Томас Эдисон; его сотрудники проделали свыше 6 тысяч опытов, опробуя  для нити накаливания различные  материалы, лучшим материалом оказались  волокна бамбука, и первые лампочки Эдисона были «бамбуковыми». Лишь спустя двадцать лет по предложению русского инженера Лодыгина нить накаливания  стали изготовлять из вольфрама.

Электростанции  требовали двигателей очень большой  мощности; эта проблема была решена созданием паровых турбин. В 1889 году швед Густав Лаваль получил патент на турбину, в которой скорость истекания пара достигала 770 м/сек. Одновременно англичанин Чарлз Парсонс создал многоступенчатую турбину; турбина Парсонса стала использоваться не только на электростанциях, но и как двигатель быстроходных судов, крейсеров и океанских лайнеров. Появились также гидроэлектростанции, на которых использовались гидротурбины, созданные в 30-х годах французским инженером Бенуа Фурнероном. Американец Пелтон в 1884 году запатентовал струйную турбину, работавшую под большим давлением. Гидротурбины имели очень высокий к.п.д., порядка 80%, и получаемая на гидростанциях энергия была очень дешевой.

Одновременно  с работами по созданию сверхмощных  двигателей шла работа над малыми передвижными двигателями. Поначалу это  были газовые двигатели, работавшие на светильном газе; они предназначались  для мелких предприятий и ремесленных  мастерских. Газовый двигатель был  двигателем внутреннего сгорания, то есть сгорание топлива осуществлялось непосредственно в цилиндре и  продукты сгорания толкали поршень. Работа при высоких температурах в цилиндре требовала системы  охлаждения и смазки; эти проблемы были решены бельгийским инженером  Этьеном Ленуаром, который и создал в 1860 году первый газовый двигатель.

Однако  получаемый из древесных опилок светильный газ был дорогим топливом, более  перспективными были работы над двигателем, работавшими на бензине. Бензиновый двигатель потребовал создания карбюратора, устройства для распыления топлива  в цилиндре. Первый работоспособный  бензиновый двигатель был создан в 1883 году немецким инженером Юлиусом Даймлером. Этот двигатель открыл эру автомобилей; уже в 1886 году Даймлер поставил свой двигатель на четырехколесный экипаж. Эта машина была продемонстрирована на выставке в Париже, где лицензию на ее производство купили французские фабриканты Рене Панар и Этьен Левассор. Панар и Левассор использовали только двигатель Даймлера; они создали свой автомобиль, оснастив его системой сцепления, коробкой передач и резиновыми шинами. Это был первый настоящий автомобиль; в 1894 году он выиграл первые автомобильные гонки Париж-Руан. В следующем году Левассор на своем автомобиле выиграл гонку Париж-Бордо. «Это было безумие! – сказал победитель. - Я мчался со скоростью 30 километров в час!» Однако Даймлер сам решил заняться производством автомобилей; в 1890 году он создал компанию «Даймлер моторен», и десять лет спустя эта компания выпустила первый автомобиль марки «Мерседес». «Мерседес» стал классическим автомобилем начала XX века; он имел четырехцилиндровый двигатель мощностью 35 л. с. и развивал скорость 70 км/час. Эта красивая и надежная машина имела невероятный успех, она положила начало массовому производству автомобилей.

К. п. д. двигателя Даймлера составлял около 20%, к. п. д. паровых машин не превосходил 13%. Между тем согласно теории тепловых двигателей, разработанной французским физиком Карно, к. п. д. идеального двигателя мог достигать 80%. Идея идеального двигателя волновала умы многих изобретателей, в начале 90-х годов ее попытался воплотить в жизнь молодой немецкий инженер Рудольф Дизель. Идея Дизеля состояла в сжатии воздуха в цилиндре до давления порядка 90 атмосфер, при этом температура достигала 900 градусов; затем в цилиндр впрыскивалось топливо; в этом случае цикл работы двигателя получался близким к идеальному «циклу Карно». Дизелю не удалось полностью реализовать свою идею, из-за технических трудностей он был вынужден понизить давление в цилиндре до 35 атмосфер. Тем не менее, первый двигатель Дизеля, появившийся в 1895 году, произвел сенсацию – его к. п. д. составлял 36%, вдвое больше, чем у бензиновых двигателей. Многие фирмы стремились купить лицензию на производство двигателей, и уже в 1898 году Дизель стал миллионером. Однако производство двигателей требовало высокой технологической культуры, и Дизелю многие годы пришлось ездить по разным странам, налаживая производство своих двигателей.

Двигатель внутреннего сгорания использовался  не только в автомобилях. В 1901 году американские инженеры Харт и Парр создали первый трактор, в 1912 году фирма «Холт» освоила выпуск гусеничных тракторов, и к 1920 году на американских фермах работало уже 200 тысяч тракторов. Трактор взял на себя не только полевые работы, его двигатель использовался для приведения в действие молотилок, косилок, мельниц и других сельскохозяйственных машин. С созданием трактора началась массовая механизация сельского хозяйства.

Появление двигателя внутреннего сгорания сыграло большую роль в зарождении авиации. Поначалу думали, что достаточно поставить двигатель на крылатый аппарат - и он поднимется в воздух. В 1894 году знаменитый изобретатель пулемета Максим построил огромный самолет с  размахом крыльев в 32 метра и весом 3,5 тонны – эта машина разбилась  при первой попытке подняться  в воздух. Оказалось, что основной проблемой воздухоплавания является устойчивость полета. Эта задача решалось долгими экспериментами с моделями и планерами. Еще в 1870-х годах  француз Пено создал несколько маленьких  моделей, приводимых в действие резиновым  моторчиком; результатом его экспериментов  был вывод о важной роли хвостового оперения. В 1890-х годах немец Отто Лилиенталь совершил около 2 тысяч полетов на сконструированном им планере. Он управлял планером, балансируя своим телом, и мог находиться в воздухе до 30 секунд, пролетая за это время 100 метров. Опыты Лилиенталя закончились трагически, он не смог справиться с порывом ветра и разбился, упав с высоты 15 метров. Работу над созданием планеров продолжили американцы братья Райт, владельцы велосипедной мастерской в городе Дейтоне. Братья Райт ввели вертикальный руль, поперечные рули-элероны и измерили подъемную силу крыльев с помощью продувания в изобретенной ими аэродинамической трубе. Построенный братьями Райт планер был хорошо управляемым и мог держаться в воздухе около минуты. В 1903 году братья Райт поставили на планер небольшой бензиновый двигатель, который они изготовили сами, в своей мастерской. 14 декабря 1903 года Вильбур Райт совершил первый моторный полет, пролетев 32 метра; 17 декабря дальность полета достигла 260 метров. Это были первые полеты в мире, до братьев Райт еще не один аэроплан не мог подняться в воздух. Постепенно увеличивая мощность мотора, братья Райт учились летать на своем аэроплане; в октябре 1905 года самолет продержался в воздухе 38 минут, пролетев по кругу 39 километров. Однако достижения братьев Райт остались незамеченными, и их обращенные к правительству просьбы о помощи остались без ответа. В том же 1905 году братья Райт были вынуждены из-за недостатка средств прекратить свои полеты. В 1907 году Райты посетили Францию, где общественность с большим интересом относилась к полетам первых авиаторов – правда, дальность полетов французских авиаторов измерялась лишь сотнями метров, и их аэропланы не имели элеронов. Рассказы и фотографии братьев Райт произвели во Франции такую сенсацию, что ее эхо докатилось до Америки и правительство немедленно предоставило Райтам заказ на 100 тысяч долларов. В 1908 году новый аэроплан Райтов совершил полет продолжительностью в 2,5 часа. Заказы на аэропланы посыпались со всех сторон, в Нью-Йорке была основана самолетостроительная компания «Райт» с капиталом 1 млн. долларов. Однако уже в 1909 году произошло несколько катастроф на «райтах», и наступило разочарование. Дело в том, что самолеты братьев Райт не имели хвостового оперения, и поэтому часто «клевали носом». Французские авиаторы знали о необходимости хвостового оперения из опытов Пено; вскоре они позаимствовали у братьев Райт элероны и превзошли своих американских собратьев. В 1909 году Луи Блерио совершил перелет через Ла-Манш. В этом же году Анри Фарман создал первую массовую модель аэроплана, знаменитый «Фарман-3». Этот самолет стал основной учебной машиной того времени и первым аропланом, который стал выпускаться серийно.

Информация о работе История наук и техники