Автор: Пользователь скрыл имя, 12 Декабря 2011 в 13:43, реферат
Каждый из нас знает теорему Пифагора, доказанную им 8 тысяч лет назад. Но не каждому известно, что Пифагор был одним из величайших философов, учение которого, к сожалению, не сохранилось до наших дней. Его великий труд умер вместе с ним и его учениками, разбросанными по всему миру после смерти учителя и не сумевшими восстановить школу, чтобы сохранить мудрость Мастера.
Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1. Биография Пифагора и его школа . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2. Пифагорейская теория чисел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3. Таблица 10 чисел . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Заключение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Список использованной литературы . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Но
на данном этапе Пифагор считал,
что идея Единого Бога, Верховной
истины, будет непонятна ученикам.
Поэтому им давалось лишь предвидение
ее, перенесенное на музыку и числа.
2.
Пифагорейская теория
чисел
Пифагор не записал своего учения. Оно известно лишь в пересказах Аристотеля и Платона. Аристотель писал: «Пифагор признал математические начала за начала всего сущего».
Философская истина переносится им на музыку и числа. Число понимается как термин, приложимый ко всем цифрам и их комбинациям. Пифагор определяя число как энергию и считал, что через науку о числах раскрывается тайна Вселенной, ибо число заключает в себе тайну вещей.
Именно наука числе может обладать ключом жизни и сути бытия.
Проникая в свойства чисел, объясняя их различные сочетания, Пифагор пытался создать науку всех наук. Все числа он разделил на два вида: четные и нечетные, и с удивительной чуткостью выявил свойства чисел каждой группы. Четные числа обладают следующими свойствами: любое число может быть разделено на две равные части, обе из которых либо четны, либо нечетны. Например, 14 делится на две равные части 7 + 7, где обе части нечетные; 16 = 8 + 8, где обе части четные. Пифагорейцы рассматривали четное число, прототипом которого была дуада, неопределенным и женским. «Четные числа, допускавшие раздвоение, казались более разумными, олицетворяли некоторое положительное явление», - писал Аристотель. Так число получало характер, теряло вечное, абстрактное начало.
Четные числа Пифагор делили на 3 класса: четно-четные, четно-нечетные, нечетно-нечетные.
Первый класс составляют числа, которые представляют собой удвоение чисел, начиная с единицы. Таким образом, это 1,2,4,8,16,32,64,128,512 и 1024. Совершенство этих чисел Пифагор видел в том, что они могут делиться пополам и еще раз, и так далее до получения единицы.
Четно-четные числа обладают некоторыми уникальными свойствами. Сумма любого числа терминов1, кроме последнего, всегда равна последнему за вычетом единицы. К примеру, сумма четырех терминов (1+2+4+8) равна пятому термину - 16 минус один, то есть 15.
Ряд четно-четных чисел имеет и такое свойство: первый член, умноженный на последний, дает последний пока в ряду с нечетным числом терминов не останется одно число, которое будучи умножено само на себя даст последнее число в ряду.
Четно-нечетные числа - это числа, которые будучи разделены пополам не делятся. Они образуются следующим образом: берется нечетное число, умножается на 2, и так весь ряд нечетных числе. В этом процессе 1,3,5,7,9,11 дают четно-нечетные числа 2,6,10,14,18,22. Таким образом, каждое такое число делится на два один раз и больше делиться не может. Другая особенность этого класса чисел состоит в том, что если делитель - нечетное число, частное - всегда будет четным, и наоборот. Например, если 22 разделить на 2, четный делитель, частное 11 будет нечетно.
Данный класс числе примечателен еще и тем, что любое число в ряду является половиной суммы терминов по обе стороны его в ряду: 18 есть 1/2 суммы 14 и 22 (чисел стоящих от данного числа по обе стороны).
нечетно-нечетные
числа является компромиссными между
четно-четными и четно-
Четные числа разделяются на три других класса: сверхсовершенные, несовершенные и совершенные.
Сверхсовершенные числа - это такие числа, сумма дробных частей, которых больше их самих. Например, 24 имеет суммой своих дробных частей 12+6+4+8+3+2+1 число 33, что превышает 24, исходное число.
Несовершенными Пифагор называл числа, сумма дробных частей, которых меньше его самого. Например, число 14 сумма его дробных частей 7+2+1=10, что меньше 14.
Совершенное число - это такое число, сумма дробных частей которого равна самому числу. Такие числа чрезвычайно редки. Есть только одно число между 1 и 10, а именно 6; одно между 10 и 100 - число 28, одно между 100 и 1000 - 496, одно между 1000 и 10000 - 8128. Совершенные числа находят следующим образом: первое число ряда четно-четных чисел складывается со вторым числом ряда, и если получается простое число, оно умножается на последнее число ряда четно-четных чисел, участвовавших в образовании суммы. Если сложение четно-четных чисел не приводит к несоставному числу. Например, первые два числа четно-четного ряда (1,2) в сумме 3, которое умножается на 2 и получаем 6, первое совершенное число. Совершенные числа, будучи умноженными на 2, дают сверхсовершенные числа, а будучи разделенными пополам - несовершенные.
Пифагорейцы развивали свою философию из науки о числах. Совершенные числа, считали они есть прекрасные образы добродетелей. Они представляют собой середину между излишеством и недостатком. Они очень редки и порождаются совершенным порядком. В противоположность этому сверизобильные и несовершенные числа, которых сколь угодно много, не расположены в порядке и не порождаются с некоторой определенной целью. И поэтому они имеют большое сходство с пороками, которые многочисленны, неупорядочены и неопределены.
Нечетные числа не могут быть разделены равным образом, то есть поровну. Пифагор объяснял неспособность таких чисел делится пополам следующим образом: поскольку 1 всегда остается не делимой, нечетное число таким же образом не может быть делимым. Если нечетное число попытаться разделить поровну, то получается два четных числа, а последнее из них единица, которая является неделимой. Например, 9 есть 4+4+1.
Нечетные числа имеют и такое свойство - если какое-либо нечетное число разделить на две части, одна всегда будет четной, а другая - всегда нечетной.
Пифагорейцы рассматривали нечетное число, прототипом которого была монада, определенным и мужским, хотя по поводу 1 (единицы) среди них существовали определенные разногласия. Некоторые считали его положительным, потому что, если его добавить к нечетному число, оно станет четным и, таким образом, рассматривается как андрогенное число, совмещающие как мужские, так и женские атрибуты, значит оно и четно и нечетно.
Обычаем
у пифагорцев было приношение высшим
богам нечетного числа
Нечетные числа делятся на 3 общих класса: несоставные, составные и несоставные - составные.
Несоставные числа - это такие числа, которые не имеют других делителей, кроме себя самого и единицы. Это числа 3,5,7,11,13,17 и т.д.
Составные числа - это числа, делимые не только сами на себя, но и на некоторые другие числа. Такими числами являются те из нечетных чисел, которые не входят в группу несоставных. Это числа 9,15,21,25,27,33,39 и т.д.
Несоставные-составные числа - эта числа, не имеющие общего делителя, хотя каждое из них делимо. Если взять два числа и обнаружить, что они не имеют общего делителя, такие числа можно назвать несоставными-составными числами. Например, числа 9 и 25. 9 делимо на 3, а 25 на 5, но ни одно из них не делимо на делитель другого, они не имеют общего делителя. Несоставными-составными они называются потому, что каждое из них имеет индивидуальный делитель, а поскольку эти числа не имеют общего делителя, они называются несоставными. Таким образом, несоставные-составные числа обнаруживаются только попарно друг с другом.
Для определения составных от несоставных нечетных чисел был придуман Эратосфеном1 математический прием.
Суть
этого приема состоит в следующем:
все нечетные числа упорядочиваются
по величине, как показано на второй
внизу таблице, названной «нечетные
числа». Из таблицы видно, что каждое третье
число, начиная с 3, делится на 3, каждое
пятое - на 5, седьмое - на 7 и т.д. до бесконечности.
Этот процесс отсеивает простые числа,
то есть те, которые не имеют других делителей,
кроме себя и единицы.
Здесь 5 умножается сперва на 3, затем на 5, затем на 7 и т.д. | |||||||||||||
Ряд нечетных чисел просеянных через 5 | 15 | ||||||||||||
Здесь 3 умножается на 3, затем на 5, затем на 7 и т.д. | |||||||||||||
Ряд нечетных чисел, просеян-ных через 3 | 9 | 15 | 21 | ||||||||||
Нечетные числа | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 |
Простые числа | 5 | 7 | 11 | 13 | 17 | 19 | 23 |
3.
Таблица десяти
чисел
Монада, или Священная Единица, называется так потому, что всегда остается в одном и том же состоянии, то есть отделенной от множественности. Монада означает:
Таким образом, Вселенная рассматривается как Монада, но индивидуальные части по отношению к частям, из которых они состоят. Некоторые пифагорейцы рассматривали Монаду как синоним единого. Ее атрибутами они называли следующее: она - четна и нечетна, она есть Бог, потому что является началом и концом всего, она также есть вместилище материи, потому что производит дуаду, которая существенно материальна. Монада для пифагорейцев тождественна великой силе, сосредоточенной в центре Вселенной и контролирующей движение планет вокруг себя. Она называется также зачаточным разумом, потому что является началом всех мыслей во Вселенной.
Монада сравнивается с вечностью, которая не знает ни прошлого, ни будущего. Она называется любовью, согласием и благочестием, потому что неделима. Монада есть причина истины и структура симфонии - все это потому, что она изначальна.
Дуада олицетворяет собой неравенство, нестабильность, подвижность, дерзость (потому что является первым числом, отделившим себя от божественного Единого). Дуада есть символ Великой Материи.
Пифагорейцы чтили монаду и презирали дуаду, так как считали, что она символизирует полярность и невежество. В ней существует смысл разделенности, который есть начало невежества. От дуады идут споры и соперничество, пока введением монады не восстанавливается равновесие.
Триада - это первое равновесие единиц, это первое число, которое по-настоящему нечетно. Число 3 сравнивается пифагорейцами с мудростью, потому что люди организуют настоящее, предвидят будущее и используют опыт прошлого. Триада есть число познания музыки, геометрии, астрономии и науки о небесных и земных телах. Куб этого числа имеет силу лунного цикла.
Пифагор учил, что триада - священное число, потому что она создается из монады (Божественного Отца) и дуады (Великой Матери) и, следовательно, является андрогенной. Она символизирует тот факт, что Бог порождает свои меры из себя, и Его творческий аспект символизируется треугольником.
Древний философ говорил также, что все в природе разделено на три части, и, что никто не может стать воистину мудрым, пока не будет представлять каждую проблему в виде треугольной диаграммы.
Тетрада,
4, рассматривалась как
Информация о работе Пифагор и его школа. Пифагорейская философия чисел