Анализ взаимосвязей производственных показателей предприятия

Автор: Пользователь скрыл имя, 02 Декабря 2010 в 13:22, реферат

Краткое описание

Цель данной работы – рассмотреть корреляционно-регрессионный анализ взаимосвязей производственных показателей предприятия.

В теоретической части рассмотрены такие вопросы, как сущность и расчет производительности труда, метода измерения уровня и динамики производительности труда, статистические методы анализа производительности труда.

В аналитической части на практике осуществлен анализ производительности труда ряда предприятий сельского хозяйства Калужской области.

Оглавление

ВВЕДЕНИЕ 3
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ 5
1. Производственные показатели деятельности предприятия и методы их расчета 5
2. Сущность корреляционно-регрессивного метода 8
2.1. Использование аналитических группировок для расчета показателей тесноты взаимосвязей, коэффициента детерминации и эмпирическое корреляционное отношение 8
2.2. Метод параллельных рядов 15
ПРАКТИЧЕСКАЯ ЧАСТЬ 16
АНАЛИТИЧЕСКАЯ ЧАСТЬ 28
ЗАКЛЮЧЕНИЕ 35
СПИСОК ЛИТЕРАТУРЫ 37

Файлы: 1 файл

20 вариант.doc

— 562.00 Кб (Скачать)
 

   Для сгруппированных в интервальный вариационный ряд данных:

   

   Здесь хi — срединные значения интервалов группировки; — взвешенная сумма квадратов отклонений.

    Таблица 5

  x`-xср (x`-xср)*n (x`-xср)2 (x`-xср)2*n
  104 312 10816 32448
  56 224 3136 12544
  8 96 64 768
  40 280 1600 11200
  88 352 7744 30976
Итого 296 1264 23360 87936
 

   σ2 = 87936/30 = 2931,2

   Стандартным отклонением (или средним квадратическим отклонением) называется корень квадратный из дисперсии:

    = 54,14

   Коэффициент вариации используется и как показатель однородности выборочных наблюдений. Считается, что если коэффициент  вариации не превышает 33 %, то выборку можно считать однородной

    = 54,14/248*100% = 21,83% - выборка однородная.

   Для несгруппированных данных среднее  арифметическое определяется по следующей формуле:

    = 7423/30 = 206,19 тыс.руб./чел., где n — объем выборки; хi — варианты выборки.

   Для несгруппированных и сгруппированных  данных величина среднего арифметического отличается из-за различного способа вычисления: для несгруппированных данных среднее арифметическое определяется по следующей формуле: , для сгруппированных - . Наиболее точная средняя простая арифметическая. Расхождения между средней простой арифметической и средневзвешенной арифметической связано с тем, что при расчете средней простой берутся фактические данные, а при расчете средневзвешенной центральные показатели, рассчитанные как сумма нижней и верхней границы интервала группы деленная на два. 

  Задание 2 

  Используя данные задания 1 построим аналитическую группировку между признаками – фондоотдача и уровнем производительности труда.

  Таблица 6

  Аналитическая группировка между среднегодовой  стоимостью основных фондов и уровнем  производительности труда

Предприятия по фондоотдаче, руб. Число предприятий, ед. Производительность  труда, тыс. руб.
всего в среднем на одно предприятие
До 1,18 3 410,00 136,67
1,18-1,21 9 1878,00 208,67
1,21-1,24 9 2319,00 257,67
1,24-1,27 3 868,00 289,33
1,27 и  выше 6 1248,00 208,00
итого 30 6723,00 224,10
 

  Таким образом, мы видим, что при росте фондоотдачи производительность труда в среднем на одно предприятие увеличивается. 

  Построим  корреляционную таблицу.

  Таблица 7

  Корреляционная  таблица

Предприятия по фондоотдаче, руб. Группы  предприятий по производительности труда, тыс. руб./чел.  
До 168 168-216 216-264 264-312 312 и выше  
До 1,18 3         3
1,18-1,21   4 5     9
1,21-1,24     7 2   9
1,24-1,27       1 2 3
1,27 и выше       4 2 6
  3 4 12 7 4 30
 

   Осуществляем  расчет показателей тесноты корреляционной связи между признаками.

   Расчет  коэффициента детерминации производим по формуле:

   η2 = δ22

   Рассчитываем  межгрупповую дисперсию:

   δ2 = ∑(у –у)2f /∑f

   Межгрупповая  дисперсия рассчитывается по результативному  признаку, т.е. производительности труда. 

   δ2 = (136,67 – 248)2∙3 + (208,67 – 248)2∙9 + (267,67 – 248)2∙9 + (289,33 – 248)2∙3 + (208 – 248)2∙6 /30= 5199,65/30 = 173,321

   Рассчитываем  общую дисперсию:

   σ2 = у2 – у2, где у2 = ∑у2 /n

   Делаем  разработочную таблицу, где у  – сумма прибыли по каждому предприятию.

Таблица 8

№ п/п Производительность  труда, тыс. руб./чел , у у2
1 225 50625
2 150 22500
3 260 67600
4 308 94864
5 251 63001
6 170 28900
7 360 129600
8 288 82944
9 248 61504
10 190 36100
11 254 64516
12 315 99225
13 276 76176
14 220 48400
15 120 14400
16 228 51984
17 284 80656
18 250 62500
19 290 84100
20 140 19600
21 200 40000
22 242 58564
23 296 87616
24 180 32400
25 258 66564
26 340 115600
27 252 63504
28 335 112225
29 223 49729
30 270 72900
  7423 1938297
 

у2 =  ∑у2 /n = 1938297/30 = 64609,9. 

  σ2 = 64609,9 – 2482 = 64609,9 – 61504 = 3105,9.

  η2 = 173,321 /3105,9 = 0,055 или 5,5%.

  Корень  квадратный из коэффициента  детерминации –  есть эмпирическое корреляционное отношение.

  η  = √ η2

  η = √0,055 = 0,236.

  Коэффициент детерминации свидетельствует о том, что изменение производительности труда на 23,6% определяется изменением фондоотдачи.

  Эмпирическое  корреляционное отношение свидетельствует  о том, что связь между фондоотдачей и производительностью слабая. 

  3 задание 

  1. Средняя ошибка выборки для  среднего производительности. Выборка  20% бесповторная.

   = =2* = 8,84 тыс.руб.

если  Р=0,683 то t=1 

  Средний уровень производительности труда  будет находиться в границах, которые мы находим по формуле: +

= ∑xd, d = fi/∑fi = 248 тыс.руб.

Следовательно, с вероятностью 0,653 можно утверждать, что средний уровень производительности труда находится в границах

248-8,84248248+8,84

239,16248256,84 

2. Количество  предприятий с уровнем производительности труда 264 тыс.руб. - 11

Доля предприятий  со средним уровнем производительности труда свыше 264 тыс.руб. находится  в пределах :

Выборочная  доля составит :

Ω = 11/30 = 0,37 

Ошибку  выборки определяем по формуле:

где N –  объем генеральной совокупности. 

= 0,078

   Следовательно с вероятностью 0,653 можно утверждать, что доля предприятий со средним уровнем производительности труда > 264 тыс.руб. будет находиться в следующих пределах:

37% ± 7,8% или 29,2 £ w £ 44,8% 

  Задание 4

  Таблица 9

t y x y*x
x*x
 
 
 
 
ŷ
1 1,15 120 138 14400 0,88 0,77 79,400 6304,360 0,780739695
2 1,16 150 174 22500 0,89 0,78 109,400 11968,360 0,972203056
3 1,16 140 162,4 19600 0,89 0,78 99,400 9880,360 0,908381936
4 1,18 170 200,6 28900 0,91 0,82 129,400 16744,360 1,099845297
5 1,19 190 226,1 36100 0,92 0,84 149,400 22320,360 1,227487537
6 1,19 220 261,8 48400 0,92 0,84 179,400 32184,360 1,418950898
7 1,19 228 271,32 51984 0,92 0,84 187,400 35118,760 1,470007794
8 1,19 180 214,2 32400 0,92 0,84 139,400 19432,360 1,163666417
9 1,19 223 265,37 49729 0,92 0,84 182,400 33269,760 1,438097234
10 1,2 225 270 50625 0,93 0,86 184,400 34003,360 1,450861458
11 1,2 200 240 40000 0,93 0,86 159,400 25408,360 1,291308657
12 1,2 242 290,4 58564 0,93 0,86 201,400 40561,960 1,559357363
13 1,22 260 317,2 67600 0,95 0,89 219,400 48136,360 1,674235379
14 1,22 248 302,56 61504 0,95 0,89 207,400 43014,760 1,597650035
15 1,22 250 305 62500 0,95 0,89 209,400 43848,360 1,610414259
16 1,22 258 314,76 66564 0,95 0,89 217,400 47262,760 1,661471155
17 1,22 252 307,44 63504 0,95 0,89 211,400 44689,960 1,623178483
18 1,23 251 308,73 63001 0,96 0,91 210,400 44268,160 1,616796371
19 1,23 254 312,42 64516 0,96 0,91 213,400 45539,560 1,635942707
20 1,23 276 339,48 76176 0,96 0,91 235,400 55413,160 1,776349172
21 1,23 270 332,1 72900 0,96 0,91 229,400 52624,360 1,7380565
22 1,25 288 360 82944 0,98 0,95 247,400 61206,760 1,852934516
23 1,25 284 355 80656 0,98 0,95 243,400 59243,560 1,827406068
24 1,25 296 370 87616 0,98 0,95 255,400 65229,160 1,903991412
25 1,27 308 391,16 94864 1,00 0,99 267,400 71502,760 1,980576757
26 1,27 315 400,05 99225 1,00 0,99 274,400 75295,360 2,025251541
27 1,27 290 368,3 84100 1,00 0,99 249,400 62200,360 1,86569874
28 1,28 335 428,8 112225 1,01 1,01 294,400 86671,360 2,152893781
29 1,3 360 468 129600 1,03 1,05 319,400 102016,360 2,312446582
30 1,3 340 442 115600 1,03 1,05 299,400 89640,360 2,184804342
Итого 8,22 1218 1434,22 221884 6,302 5,68 933,800    
среднее 0,274 40,6 47,80733 7396,133          

Информация о работе Анализ взаимосвязей производственных показателей предприятия