Автор: Пользователь скрыл имя, 28 Января 2011 в 15:28, курсовая работа
Сетевое планирование - метод управления, основанный на использовании математического аппарата теории графов и системного подхода для отображения и алгоритмизации комплексов взаимосвязанных работ, действий или мероприятий для достижения четко поставленной цели.
Введение
Построение сетевого графика
Анализ сетевого графика
Оптимизация сетевого графика
Заключение
Список использованной литературы
В этой таблице работы расположены в порядке возрастания суточного прироста затрат на снижение их продолжительности. Наименования полных путей и их продолжительность взяты из результатов предыдущего анализа сетевого графика для рассматриваемого нормального варианта. Максимально возможное количество сокращаемых суток для каждой работы указано в скобках.
На первом шаге рассматривается работа 2-4, которая входит в третий полный путь и ее продолжительность может быть сокращена на все 3 суток, т.к. продолжительность третьего полного пути, а следовательно и всего комплекса работ, все равно будет выше требуемой. Такое снижение продолжительности рассматриваемой работы на 3 суток приведет к увеличению затрат на выполнение этой работы, а следовательно и всего комплекса работ в размере: 3*10=30 у.е.
На втором шаге рассматриваемая работа 1-3 , которая входит во второй полный путь и ее продолжительность может быть сокращена на 3 суток , (из 5 возможных), т.к. при этом продолжительность второго пути, в который она входит становится равной заданной : 22-3=19.Аналогично рассчитываем затраты на такое сокращение : 3*15=45
На третьем шаге рассматриваемая работа 1-2 входит в первый и третий полный путь . Она может быть сокращена на максимально возможную величину (указанную в скобках) на 1, т.к при этом продолжительность третьего полного пути все равно будет выше требуемого . Аналогично рассчитываем затраты на такое сокращение : 1*20=20
На четвертом шаге рассматриваемая работа 2-5 входит в первый полный путь и ее продолжительность сокращать не нужно , т.к.продолжительность первого полного пути меньше требуемого .
На пятом шаге рассматриваемая работа 3-6 входит во второй полный путь и ее продолжительность сокращать не нужно , т.к.продолжительность второго полного пути меньше требуемого .
На шестом шаге рассматриваемая работа 4-5 входит в третий полный путь. Она может быть сокращена на максимально возможную величину (указанную в скобках) на 5, т.к при этом продолжительность третьего полного пути все равно будет выше требуемого . Аналогично рассчитываем затраты на такое сокращение : 5*35=175
На седьмом шаге рассматриваемая работа 5-6 , которая входит в первый и третий полный путь и ее продолжительность может быть сокращена на 1 сутки , (из 3 возможных), т.к. при этом продолжительность третьего полного пути, в который она входит становится равной заданной : 20-1=19, а продолжительность первого полного пути меньше требуемого. Аналогично рассчитываем затраты на такое сокращение : 1*40=40
Подсчитав суммарные дополнительные затраты на произведенное сокращение продолжительностей работ (310 у.е.) и зная первоначальную стоимость (1060 у.е.) всего комплекса работ в рассматриваемом нормальном варианте его выполнения, получим, что при снижении продолжительности выполнения всего комплекса работ с 29 суток до 19 суток оптимальные затраты составят 1060+310=1370 (у.е.).
Представим решение поставленной задачи вторым способом в таблице:
№ шага | Суточный прирост затрат | Работа | Количество наращиваемых суток | Продолжительность полного пути | Общее снижение затрат | ||
1-2-5-6 | 1-3-6 | 1-2-4-5-6 | |||||
0 | - | - | - | 13 | 11 | 17 | - |
1 | 40 | 5-6 | 3 (2) | 15 | 19 | -80 | |
2 | 35 | 4-5 | 5 (2) | - | - | - | - |
3 | 30 | 3-6 | 6 (6) | - | 17 | - | -180 |
4 | 25 | 2-5 | 2 (2) | 17 | - | - | -50 |
5 | 20 | 1-2 | 1 (1) | - | - | - | - |
6 | 15 | 1-3 | 5 (2) | - | 19 | - | -30 |
7 | 10 | 2-4 | 3 - | - | - | - | - |
В С Е Г О | -340 |
Отличие этой таблицы от предыдущей состоит в том, что в ней работы располагаются в порядке убывания их суточного прироста затрат на изменение (увеличение) их продолжительности. Продолжительность полных путей здесь соответствует другому варианту и взята из результатов предыдущего анализа сетевого графика для рассматриваемого ускоренного варианта выполнения всего комплекса работ. В последней колонке теперь будет рассчитываться уже снижение затрат.
На первом шаге продолжительность работы 5-6 может быть увеличена только на 2 суток из возможных (3), т.к. при этом продолжительность третьего полного пути станет как требуемая в задании. Тогда затраты на эту работу, с более поздним сроком выполнения, снизятся на 2·40=80 (у.е.), т.е. -80 у.е.
Второй шаг 4-5придется не использовать, т.к. увеличение продолжительности соответствующей ему работы 43-5 приведет к недопустимому увеличению продолжительности третьего полного пути, а следовательно, и всего комплекса работ.
Рассматривая работу 3-6 на третьем шаге, увеличиваем продолжительность второго пути на 6 суток, т.к. продолжительность второго полного пути станет как требуемая в задании.
На четвертом шаге продолжительность работы 2-5 в первом полном пути можно увеличить на максимально возможное число суток.
Пятый шаг 1-2 мы не используем.
Шестой шаг 1-3 увеличиваем на 2 из 5 возможных , т.к. при этом продолжительность второго полного пути станет как требуемая в задании -19
Седьмой шаг 2-4 мы не используем.
Подсчитав суммарное снижение затрат из-за произведенного увеличения продолжительностей работ (-340 у.е.) и зная первоначальную стоимость (1710 у.е.) всего комплекса работ в рассматриваемом ускоренном варианте его выполнения, получим, что при увеличении продолжительности выполнения всего комплекса работ с 17 суток до 19 суток оптимальные затраты составят 1710-340=1370 (у.е.).
Итоговые результаты, полученные обоими способами оптимизации, должны совпадать. Проверим это:
продолжительности соответствующих полных путей после оптимизации совпадают - 19,19,17;
стоимости выполнения всего комплекса работ после оптимизации совпадают - 1370.
В данной курсовой работе был построен сетевой график, проведен его анализ, и произведена оптимизация сетевого графика. При использовании данных методик можно найти критический путь сетевого графика. В результате оптимизации определили минимальную стоимость комплекса работ при заданной продолжительности его выполнения.
Значимость проделанной работы заключается в том, что применение предложенных методик, во-первых - позволяет точно судить об оптимальности сетевых графиков любой сложности, а во-вторых - сокращает затраты на сетевое планирование в целом, прежде всего, за счёт сокращения длительности разработки оптимальных сетевых графиков.
Анализ
сетевого графика заключается в том, чтобы
выявить резервы времени работ, не лежащих
на критическом пути, и направить их на
работы, лимитирующие срок завершения
комплекса работ. Результатом этого является
сокращение продолжительности критического
пути.
Список литературы
Абланская Л.В., Бабешко Л.О., Баусов Л.И. Экономико-математическое моделирование: М.: Экзамен, 2006г. - 800с.
1. Баканов М.И., Шеремет А.Д. Теория экономического анализа: Учебник. - М.: Финансы и статистика, 1997.
Дрогобыцкого И.Н Экономико-математическое моделирование: М.: Экзамен, 2004г. - 323с.
Казаков О.Л., Миненко С.Н., Смирнов Г.Б. Экономико-математическое моделирование: учебно-методическое пособие. - М.: МГИУ, 2006. - 136 с.
Конюховский П.В Математические методы исследования операций в экономике: С-Петербург: Питер 2003г. - 208 с.
Информация о работе Оптимизация сетевой модели комплекса производственных работ