Автор: Пользователь скрыл имя, 11 Февраля 2013 в 20:33, реферат
В реферате предпринята попытка рассмотреть философские аспекты математического моделирования как метода познания окружающего мира. В первой части исследованы общие вопросы математического моделирования. Определяются и обосновываются понятия моделирование, вычислительный эксперимент, математическая модель и математическое моделирование, приводится классификация математических моделей. Во второй и третьей частях рассматривается применение математического моделирования в различных отраслях человеческого знания и деятельности. Вторая часть посвящена вопросам кибернетики, моделирования мысленной деятельности человека. Поднимаются вопросы искусственного интеллекта, модели искусственного нейрона, нейросетевых технологий.
Анализируя процесс приложения кибернетического моделирования в различных областях знания, можно заметить расширение сферы применения кибернетических моделей: использование в науках о мозге, в социологии, в искусстве, в ряде технических наук. В частности, в современной измерительной технике нашли приложение информационные модели[14]. Возникшая на их основе информационная теория измерения и измерительных устройств - это новый подраздел современной прикладной метрологии.
Моделирование мыслительной деятельности человека.
Использование ЭВМ в моделировании деятельности мозга позволяет отражать процессы в их динамике, но у этого метода в данном приложении есть свои сильные и слабые стороны. Наряду с общими чертами, присущими мозгу и моделирующему его работу устройству, такими, как:
материальность
закономерный характер всех процессов
общность некоторых форм движения материи
отражение
принадлежность к классу самоорганизующихся динамических систем,
в которых заложены:
а) принцип обратной связи
б) структурно-функциональная аналогия
в) способность накапливать информацию[15]
есть существенные отличия, такие как:
Моделирующему устройству присущи лишь низшие формы движения - физическое, химическое, а мозгу, кроме того - социальное, биологическое;
Процесс отражения в мозге
человека проявляется в субъективно-
В языке человека и машины. Язык человека носит понятийный характер.
Свойства предметов и
явлений обобщаются с помощью
языка. Моделирующее устройство имеет
дело с электрическими импульсами,
которые соотнесены человеком с
буквами, числами. Таким образом, машина
«говорит» не на понятийном языке, а
на системе правил, которая по своему
характеру является формальной, не
имеющей предметного
Использование математических
методов при анализе процессов
отражательной деятельности мозга
стало возможным благодаря
Согласно определению Мак-Каллока и Питтса формальный нейрон[16] -это элемент, обладающий следующими свойствами:
Он работает по принципу «все или ничего»;
Он может находиться в одном из двух устойчивых состояний;
Для возбуждения нейрона необходимо возбудить некоторое количество сигналов, не зависящих от предыдущего состояния нейрона;
Имеет место задержка прохождения сигналов в синапсах в течение некоторого времени ;
Имеются два вида входов: возбуждающие и тормозящие;
Порог возбуждения предполагается неизменным;
Возбуждение любого тормозящего
синапса предотвращает
Искусственный нейрон, смоделированный Мак-Каллоком и Питтсом, имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации возбуждения нейрона. Схема представления искусственного нейрона приведена на рисунке 2.
Существующие модели, имитирующие
деятельность мозга (Ферли, Кларка, Неймана,
Комбертсона, Уолтера, Джоржа, Шеннона,
Аттли, Берля и других) отвлечены
от качественной специфики естественных
нейронов. Однако с точки зрения
изучения функциональной стороны деятельности
мозга это оказывается
Существует ряд подходов к изучению мозговой деятельности:
теория автоматического
регулирования (живые системы
информационный (пришел на смену энергетическому подходу)
Его основные принципы:
а) выделение информационных связей внутри системы
б) выделение сигнала из шума
в) вероятностный характер
Успехи, полученные при изучении деятельности мозга в информационном аспекте на основе моделирования, по мнению Н.М. Амосова[17], создали иллюзию, что проблема закономерностей функционирования мозга может быть решена лишь с помощью этого метода. Однако, по его же мнению, любая модель связана с упрощением, в частности:
не все функции и специфические свойства учитываются
отвлечение от социального, нейродинамического характера.
Таким образом, делается вывод о критическом отношении к данному методу (нельзя переоценивать его возможности, но вместе с тем, необходимо его широкое применение в данной области с учетом разумных ограничений).
Проблемы экспертных систем, искусственного интеллекта и нейросетей.
Экспертными системами принято называть те или иные программные средства, выполняющие те или иные аналитические функции. В зависимости от уровня и способа решения задач они делятся на следующие группы[18]:
Экспертные системы, основанные на правилах. Основная их отличительная черта состоит в том, что решения, вырабатываемые данными системами, производятся на основе жестких правил – ранее установленных знаний в предметной области. Эти оценки и модели встроены в систему и правильность решений, вырабатываемых системой, находится в прямой зависимости от адекватности этих оценок или моделей.
Экспертные системы, основанные
на принципах. Данные экспертные системы
появились в результате стремления
преодолеть недостатки экспертных систем,
основанных на жестких моделях. Основным
недостатком теоретических
Экспертные системы, основанные
на примерах. Рассмотренные выше экспертные
системы можно в целом
Экспертные системы, основанные на имитационном моделировании. Данные экспертные системы позволяют при исследовании функционирования сложных систем составить модель на основе имеющихся данных и экспертных оценок и затем на основе свойств данной модели протестировать процесс функционирования данной системы, вводя в модель те или иные данные с целью получения оптимальных выходных характеристик.
Особое место среди экспертных систем занимают системы искусственного интеллекта. Проблема искусственного интеллекта занимает очень большое место в практике сознания и использования вычислительной техники. С ней связано много вопросов и чисто гносеологического характера. Академик Н.Н. Моисеев[19] писал, что сам термин «искусственный интеллект» – не более чем лингвистический нонсенс, и правильно было бы говорить об имитационных системах, понятием которых прежде всего и связан рациональный смысл денного термина. В узком смысле под искусственным интеллектом понимаются технические средства и логика программирования, принципиально упрощающая все процедуры общения с ЭВМ. Моисеев считает, что ни сегодня, ни в обозримом будущем, нет и не будет никаких оснований говорить о возможности появления искусственных систем, которые представляли бы новую, более совершенную форму организации материи. Нет никаких оснований считать, что машина сама по себе превратится в свехрчеловека и «отменит» человечество в качестве пройденного, «устаревшего» уровня организации сознания и материи. Знаменитый Терминатор останется продуктом фантастики. Моисеев уверен, что вычислительная техника и средства искусственного интеллекта, как бы они не развивались в дальнейшем, все равно по прежнему будут оставаться плодом человеческого разума и рук и по прежнему будут служить целям человека.
Далее будем понимать термин
«искусственный интеллект» только в
узком смысле, связывая его с технологией
обработки и использования
Нейросетевые технологии
– одна из разновидностей систем искусственного
интеллекта. Понятия нейпронная сеть,
нейроматематика, нейроимитатор все
шире входят в нашу жизнь, становятся
привычныс и эффективным
В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с нерегулярными задачами[20]:
простой обрабатывающий элемент – нейрон;
большое количество нейронов,
участвующих в обработке
связь каждого нейрона с большим количеством других нейронов;
изменяющиеся по весу связи между нейронами;
массивная параллельность обработки информации.
Нейросетевые технологии хорошо зарекомендовали себя в решении всевозможных задач прогнозирования. Они способны решать задачи опираясь на неполную, искаженную, зашумленную и внутренне противоречивую информацию. И как сказал Роберт Хехт-Нильсен[21]: «Не имеет значения, похожи ли на самом деле в работе нейронные сети на мозг. Значение имеет лишь то, что у данных теоретических моделей можно математически обосновать наличие способностей к переработке информации».
Использование математического моделирования в исследованиях экономических систем.
Модели агрегированной экономики.
Экономико-математическое моделирование является неотъемлемой частью любого исследования в области экономики. Бурное развитие математического анализа, исследования операций, теории вероятностей и математической статистики способствовало формированию различного рода моделей экономики.
Почему можно говорить
об эффективности применения методов
математического моделирования
в этой области? Во-первых, экономические
объекты различного уровня (начиная
с уровня простого предприятия и
кончая макроуровнем - экономикой страны
или даже мировой экономикой) можно
рассматривать с позиций
изменчивость (динамичность);
противоречивость поведения;
тенденция к ухудшению характеристик;
подверженность воздействию окружающей среды;
предопределяют выбор метода их исследования.
За последние 30-40 лет методы
моделирования экономики
В литературе, посвященной вопросам экономико-математического моделирования, в зависимости от учета различных факторов (времени, способов его представления в моделях; случайных факторов и тому подобное) выделяют, например, такие классы моделей:
Информация о работе Математическое моделирование как философская проблема