Разработка микропроцессорной системы управления насосным агрегатом

Автор: Пользователь скрыл имя, 25 Марта 2012 в 19:44, курсовая работа

Краткое описание

В работе рассматриваются приемы проектирования как аппаратных, так и программных средств микропроцессорной системы управления. Проектирование аппаратных средств требует знания особенностей микропроцессорных комплектов микросхем различных серий и функциональных возможностей микросхем, входящих в состав микропроцессорного комплекта, умения правильно выбрать серию. Проектирование программных средств требует знаний, необходимых для выбора метода и алгоритма решения задач, входящих в функции МПУ, для составления программы (часто с использованием языков низкого уровня - языка кодовых комбинаций, языка Ассемблера), а также умения использовать средства отладки программ. Основой МПУ является микропроцессор - ИС, обладающая такой же производительностью при переработке информации, что и большая ЭВМ.

Оглавление

Введение……………………………………………………………………..3
1 Разработка функциональной схемы микропроцессорной системы управления насосным агрегатом.………………….……………………………...4
2 Архитектура шин передачи данных..…………………………………...4
2.1 Архитектура последовательной шины передачи данных RS232…………..……………………………………………………….4
2.2 Архитектура последовательной шины передачи данных ISP….10
3 Обоснование выбора элементарной базы микропроцессорной системы управления насосным агрегатом…………...…………………………………….11
3.1 Микроконтроллер КР1816ВЕ51………………………………….12
3.2 Приемопередатчик MAX 202E…………………………………...16
3.3 Микросхема K572ПВ……………………………………………...19
3.4 Микросхема К531ГГ1……………………………………………..23
4 Разработка алгоритма работы микропроцессорной системы управления насосным агрегатом……………….………………………………………………23
5 Разработка принципиальной схемы микропроцессорной системы управления насосным агрегатом…………………………………………………24
Список использованных источников……………………………………...27
Приложение A………………………………………………………………28
Приложение B………………………………………………………………29

Файлы: 1 файл

Красивое оформление курсовика.doc

— 757.50 Кб (Скачать)

 

Электрическая функциональная схема представлена на рисунке 9.

Рисунок 9 - Электрическая функциональная схема K572ПВ

Обозначение выводов K572ПВ представлено на рисунке 10.

 

Рисунок 10 – Обозначение выводов K572ПВ

3.4 Микросхема К531ГГ1

Микросхема К531ГГ1 (рис.11) содержит два одинаковых автоколебательных мультивибратора, у каждого из которых имеются входы управления частотой повторения импульсов (FI1 и FI2) и входы выбора диапазона генерируемых частот (D1 и D2), инверсные входы разрешения работы (E1 и E2), а также входы СH подключения внешнего резонатора (конденсатора или пьезоэлектрического резонатора). На выходе мультивибраторов (Q1 и Q2) формируются прямоугольные импульсы напряжения типа "меандр" (скважность Q=2).

 

Рисунок 11 - Микросхема К531ГГ1

4 Разработка алгоритма работы микропроцессорной системы управления насосным агрегатом

МПС работает в следующей последовательности:

                  инициализация системы;

                  опрос датчиков;

                  управление насосным агрегатом;

                  обмен данными с диспетчерским пунктом;

                  переход ко второму пункту.

Алгоритм работы МПС отображен на рисунке 12.

 

Рисунок 12 - Алгоритм работы МПС

5 Разработка принципиальной схемы микропроцессорной системы управления насосным агрегатом

На основе разработанной функциональной схемы и выбранной элементарной базы построена принципиальная схема, представленная в приложении А.

К МПС должна обеспечивать:

                  опрос 7 аналоговых датчиков;

                  сбор 8 дискретных сигналов;

                  формирование 4 дискретных управляющих воздействий.

Расчет необходимого объема памяти данных производится по формуле

,                                          (1)

где и - количество аналоговых и дискретных входных сигналов соответственно; и - разрядность аналогового и дискретного сигналов.

В нашем случае и .

В итоге для хранения данных опроса датчиков необходимо

                                                  (2)

В качестве центрального блока системы выбран микроконтроллер КМ1816ВЕ51.

Для хранения данных используется встроенные 128 байт памяти программ МК. Программа будет храниться в резидентной памяти программ.

Для опроса аналоговых датчиков используется микросхема К572ПВ4. К преимуществам микросхемы относятся:

        наличие встроенного мультиплексора;

        автоматический опрос датчиков без участи микропроцессора;

        хранение результатов преобразования по каждому каналу во встроенной статической памяти.

Так как у МК нет выходов генератора, для формирования тактового сигнала используется микросхема генератора К531ГГ1.

Для организации обмена информации с диспетчерским пунктом используется встроенный в МК приемопередатчик. Однако ПП КМ1816ВЕ51 передает данные с помощью пятивольтовых логических сигналов: единица представляется уровнем напряжения от 2,4 В до 5 В, а нуль - от 0 до 0, 8 В. При передаче по каналу RS-232 нуль и единица кодируются одинаковыми по величине (от 5 до 12 В), но разными по знаку сигналами.

Поскольку для передачи по RS-232 пятивольтовые  логические сигналы должны быть преобразованы в сигналы другого уровня, в МПС используется микросхема MAX202E от Maxim. Она содержат преобразователь  напряжения из +5 В в ±10 В и каскады, осуществляющие преобразование логических сигналов стандартного пятивольтного уровня по стандарту RS-232. Она содержит преобразователи логического уровня для двух приемников и двух передатчиков, из которых используется только один приемопередающий канал.

Принципиальная схема МПС приведена в приложении В.

К выводам XTAL1 и XTAL2 микроконтроллера DD1 подключается кварцевый резонатор ZQ1 на 12 МГц. Для более стабильного запуска выводы кварцевого резонатора соединены с общим проводом через конденсаторы С1 и С2 емкостью 21 пФ.

При подаче напряжения питания на микроконтроллер обязателен сброс микроконтроллера. С этой целью вход RST соединен с шиной питания через конденсатор С3 емкостью 6 мкФ и с общим проводом – через резистор R1 сопротивлением 100 кОм. В момент включения питания конденсатор разряжен, и вход сброса оказывается под потенциалом, близким к напряжению питания. Несмотря на снижение этого потенциала вследствие заряда С3, в течение десятка миллисекунд уровень сигнала на входе сброса остается единичным, и осуществляется корректный запуск микроконтроллера.

На вход подается логическая единица, т.к. микроконтроллер будет выполнять программу из резидентной памяти.

К линиям порта P0 МК DD1 подключены дискретные входные сигналы DDAT1-DDAT8. К линиям порта P1 подключена АЦС DA1. На линиях P1.0-P1.3 формируются дискретные управляющие воздействия DOUT1-DOUT4.

Так как аналоговые датчики, подключаемые к АЦС DA1 должны иметь выходным параметром напряжение, находящееся в диапазоне от 0В до 2,5В. Для преобразования токовых сигналов датчиков в сигнал напряжения используются резисторы R2-R13.

Перечень элементов представлен в приложении В.

 

 

 

 

 

Список источников

1.                  http://www.rebooting.ru/hard/enginecontroller4/

2.                  http://www.novosoft.by/Ency/rs-232.htm

3.                  http://www.gaw.ru/html.cgi/txt/ic/Atmel/micros/avr/at90s2313.htm



Информация о работе Разработка микропроцессорной системы управления насосным агрегатом