Шпаргалка по "Биологии"

Автор: Пользователь скрыл имя, 05 Марта 2013 в 16:16, курсовая работа

Краткое описание

Работа содержит ответы на вопросы по дисциплине "Биология"

Файлы: 1 файл

biologia_kolokvium.docx

— 95.84 Кб (Скачать)

[править]Стабилизирующие взаимодействия

В стабилизации третичной  структуры белка принимают участие:

• ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

• ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

• водородные связи;

• гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

• Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственностиживых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии,пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геноморганизма.

• Среди некоторых организмов, в основном одноклеточных, встречается горизонтальный перенос генов, не связанный с размножением.

• Классификация генов

• В зависимости от локализации генов в структурах клетки различают ядерные и митохондриальные гены (рис. IV. 14).

• По своему функциональному назначению гены могут быть разделены на две группы. Первая группа представлена генами, кодирующими белки; вторая группа — генами, контролирующими синтез РНК.

• Среди генов, кодирующих белки, различают:

• — гены «домашнего хозяйства», продукты которых необходимы для обеспечения функции любого типа клеток;

• — гены терминальной дифференцировки, т. е. гены, обеспечивающие специализированные функции клеток;

Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Термин предложен Гуго де Фризом. Процесс возникновения мутаций получил название мутагенеза.

Существует несколько  классификаций мутаций по различным  критериям. Мёллер предложил делить мутации по характеру изменения функционирования гена на гипоморфные (измененные аллели действуют в том же направлении, что и аллели дикого типа; синтезируется лишь меньше белкового продукта), аморфные (мутация выглядит, как полная потеря функции гена, например, мутация white у Drosophila),антиморфные (мутантный признак изменяется, например, окраска зерна кукурузы меняется с пурпурной на бурую) и неоморфные.

В современной учебной  литературе используется и более  формальная классификация, основанная на характере изменения структуры  отдельных генов, хромосом и генома в целом. В рамках этой классификации  различают следующие виды мутаций:

• геномные;

• хромосомные;

• генные.

Геномные: — полиплоидизация (образование организмов или клеток, геном которых представлен более чем двумя (3n, 4n, 6n и т. д.) наборами хромосом) и анеуплоидия (гетероплоидия) — изменение числа хромосом, не кратное гаплоидному набору (см. Инге-Вечтомов, 1989). В зависимости от происхождения хромосомных наборов среди полиплоидов различают аллополиплоидов, у которых имеются наборы хромосом, полученные при гибридизации от разных видов, и аутополиплоидов, у которых происходит увеличение числа наборов хромосом собственного генома, кратное n.

При хромосомных мутациях происходят крупные перестройки  структуры отдельных хромосом. В этом случае наблюдаются потеря (делеция) или удвоение части (дупликация) генетического материала одной или нескольких хромосом, изменение ориентации сегментов хромосом в отдельных хромосомах (инверсия), а также перенос части генетического материала с одной хромосомы на другую (транслокация) (крайний случай — объединение целых хромосом, т. н. Робертсоновская транслокация, которая является переходным вариантом от хромосомной мутации к геномной).

На генном уровне изменения  первичной структуры ДНК генов  под действием мутаций менее  значительны, чем при хромосомных  мутациях, однако генные мутации встречаются  более часто. В результате генных мутаций происходят замены, делеции и вставки одного или нескольких нуклеотидов, транслокации, дупликации и инверсии различных частей гена. В том случае, когда под действием мутации изменяется лишь один нуклеотид, говорят о точечных мутациях. Поскольку в состав ДНК входят азотистые основания только двух типов — пурины и пиримидины, все точечные мутации с заменой оснований разделяют на два класса: транзиции (замена пурина на пурин или пиримидина на пиримидин) и трансверсии (замена пурина на пиримидин или наоборот). Возможны четыре генетических последствия точковых мутаций: 1) сохранение смыслакодона из-за вырожденности генетического кода (синонимическая замена нуклеотида), 2) изменение смысла кодона, приводящее к замене аминокислоты в соответствующем месте полипептидной цепи (миссенс-мутация), 3) образование бессмысленного кодона с преждевременной терминацией (нонсенс-мутация). В генетическом коде имеются три бессмысленных кодона: амбер — UAG, охр — UAA и опал — UGA (в соответствии с этим получают название и мутации, приводящие к образованию бессмысленных триплетов — например амбер-мутация), 4) обратная замена (стоп-кодона на смысловой кодон).

По влиянию на экспрессию генов мутации разделяют на две  категории: мутации типа замен пар  оснований и типа сдвига рамки  считывания (frameshift). Последние представляют собой делеции или вставки нуклеотидов, число которых не кратно трём, что связано с триплетностью генетического кода.

Первичную мутацию иногда называют прямой мутацией, а мутацию, восстанавливающую исходную структуру  гена, — обратной мутацией, или реверсией. Возврат к исходному фенотипу у мутантного организма вследствие восстановления функции мутантного гена нередко происходит не за счет истинной реверсии, а вследствие мутации  в другой части того же самого гена или даже другого неаллельного гена. В этом случае возвратную мутацию  называют супрессорной. Генетические механизмы, благодаря которым происходит супрессия мутантного фенотипа, весьма разнообразны.

Почковые мутации (спорты) — стойкие соматические мутации происходящие в клетках точек роста растений. Приводят к клоновой изменчивости[1]. При вегетативном размножении сохраняются. Многие сорта культурных растений являются почковыми мутациями[2].

  1. Рибонуклеи́новая кисло́та (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.

Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной  цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит  из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные  организмы используют РНК (мРНК) для программирования синтеза белков.

Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице  ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК(мРНК) принимают участие в процессе, называемом трансляцией. Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.

Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной икаталитической основой рибосом.

Однако функции РНК  в современных клетках не ограничиваются их ролью в трансляции. Так, малые  ядерные РНК принимают участие  в сплайсинге эукариотических матричных РНК и других процессах.

Помимо того, что молекулы РНК входят в состав некоторых  ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называютсярибозимами.

Геномы ряда вирусов состоят  из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута  гипотеза, согласно которой РНК —  первая молекула, которая была способна к самовоспроизведению в добиологических  системах.

Матричная (информационная) РНК — РНК, которая служит посредником  при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка[29]. Однако подавляющее большинство РНК не кодируют белок. Эти некодирующие РНК могут транскрибироваться с отдельных генов (например, рибосомальные РНК) или быть производными интронов[30]. Классические, хорошо изученные типы некодирующих РНК — это транспортные РНК (тРНК) и рРНК, которые участвуют в процессе трансляции[31]. Существуют также классы РНК, ответственные за регуляцию генов, процессинг мРНК и другие роли. Кроме того, есть и молекулы некодирующих РНК, способные катализировать химические реакции, такие, как разрезание илигирование молекул РНК[32]. По аналогии с белками, способными катализировать химические реакции — энзимами (ферментами), каталитические молекулы РНК называются рибозимами.

  1. Транскри́пция (от лат. transcriptio — переписывание) — процесс синтеза РНК с использованиемДНК в качестве матрицы, происходящий во всех живых клетках. Другими словами, это перенос генетической информации с ДНК на РНК.

Транскрипция катализируется ферментом ДНК-зависимой РНК-полимеразой. Процесс синтеза РНК протекает в направлении от 5'- к 3'- концу, то есть по матричной цепи ДНК РНК-полимеразадвижется в направлении 3'->5'[1]

Транскрипция состоит  из стадий инициации, элонгации и  терминации.

Инициация транскрипции

Инициация транскрипции —  сложный процесс, зависящий от последовательности ДНК вблизи транскрибируемой последовательности (а у эукариот также и от более далеких участков генома — энхансеров и сайленсеров) и от наличия или отсутствия различных белковых факторов.

[править]Элонгация транскрипции

Момент перехода РНК-полимеразы от инициации транскрипции к элонгации  точно не определен. Три основных биохимических события характеризуют  этот переход в случае РНК-полимеразы кишечной палочки: отделение сигма-фактора, первая транслокация молекулы ферментавдоль матрицы и сильная стабилизация транскрипционного комплекса, который кроме РНК-полимеразы включает растущую цепь РНК и транскрибируемую ДНК. Эти же явления характерны и для РНК-полимераз эукариот. Переход от инициации к элонгации сопровождается разрывом связей между ферментом, промотором, факторами инициации транскрипции, а в ряде случаев — переходом РНК-полимеразы в состояние компетентности в отношении элонгации (например, фосфорилирование CTD-домена у РНК-полимеразы II). Фаза элонгации заканчивается после освобождения растущего транскрипта и диссоциации фермента от матрицы (терминация).

На стадии элонгации в  ДНК расплетено примерно 18 пар нуклеотидов. Примерно 12 нуклеотидов матричной  нити ДНК образует гибридную спираль  с растущим концом цепи РНК. По мере движения РНК-полимеразы по матрице  впереди нее происходит расплетание, а позади — восстановление двойной спирали ДНК. Одновременно освобождается очередное звено растущей цепи РНК из комплекса с матрицей и РНК-полимеразой. Эти перемещения должны сопровождаться относительным вращением РНК-полимеразы и ДНК. Трудно себе представить, как это может происходить в клетке, особенно при транскрипции хроматина. Поэтому не исключено, что для предотвращения такого вращения двигающуюся по ДНК РНК-полимеразу сопровождают топоизомеразы.

Элонгация осуществляется с  помощью основных элонгирующих факторов, необходимых, чтобы процесс не останавливался преждевременно[2].

В последнее время появились  данные, показывающие, что регуляторные факторы также могут регулировать элонгацию. РНК-полимераза в процессе элонгации делает паузы на определенных участках гена. Особенно четко это  видно при низких концентрациях  субстратов. В некоторых участках матрицы длительные задержки в продвижении  РНК-полимеразы, т. н. паузы, наблюдаются  даже при оптимальных концентрацияхсубстратов. Продолжительность этих пауз может контролироваться факторами элонгации.

[править]Терминация

У бактерий есть два механизма  терминации транскрипции:

• ро-зависимый механизм, при котором белок Rho (ро) дестабилизирует водородные связи между матрицей ДНК и мРНК, высвобождая молекулу РНК.

• ро-независимый, при котором транскрипция останавливается, когда только что синтезированная молекула РНК формирует стебель-петлю, за которой расположено несколько урацилов (…УУУУ), что приводит к отсоединению молекулы РНК от матрицы ДНК.

Терминация транскрипции у эукариот менее изучена. Она завершается разрезанием РНК, после чего к её 3' концу фермент добавляет несколькоаденинов (…АААА), от числа которых зависит стабильность данного транскрипта[3].

Экспрессия генов —  это процесс, в ходе которого наследственная информация от гена (последовательности нуклеотидов ДНК) преобразуется  в функциональный продукт — РНК  или белок. Экспрессия генов может  регулироваться на всех стадиях процесса: и во время транскрипции, и во время трансляции, и на стадии посттрансляционных модификаций белков.

Регуляция экспрессии генов  позволяет клеткам контролировать собственную структуру и функцию  и является основой дифференцировки  клеток,морфогенеза и адаптации. Экспрессия генов является субстратом для эволюционных изменений, так как контроль за временем, местом иколичественными характеристиками экспрессии одного гена может иметь влияние на функции других генов в целом организме.

Информация о работе Шпаргалка по "Биологии"