Разработка локальной поверочной схемы. Физические принципы спектрофотометрии Устройство спектрофотометра

Автор: Пользователь скрыл имя, 27 Марта 2014 в 18:51, курсовая работа

Краткое описание

Термин свет означает электромагнитное излучение от дальней области ультрафиолетового диапазона до ближней области инфракрасного диапазона. На протяжении более чем двухсот лет оптическая спектроскопия применяется в различных областях науки, производства и медицины, в том числе в химии, биологии, физике и астрономии. Высокая специфичность оптической спектроскопии объясняется тем, что каждое вещество обладает своими спектральными свойствами, отличными от спектральных свойств других веществ. Вещества можно анализировать как в количественном, так и в качественном аспектах. В отличие от других методов спектроскопии, таких как ЯМР (ядерный магнитный резонанс), ЭПР (электронный парамагнитный резонанс), Мессбауэровской или масс-спектрометрии, для анализируемых с помощью оптической спектроскопии образцов практически нет ограничений.

Файлы: 1 файл

Мой курсовой спектрофотометр - копия.doc

— 2.06 Мб (Скачать)

2.2.3. Двуволновые спектрофотометры

 

В начале 50-х годов прошлого века Брайтон Чанс предложил новый метод измерения очень маленьких изменений поглощения сильно рассеивающих и мутных образцов. Основная идея очень проста. В то время как в двулучевой спектроскопии, где две кюветы, с образцом и сравнением, облучаются светом одной, но переменной длины волны , в двуволновой абсорбционной спектрофотометрии используется только одна кювета с образцом, которая облучается двумя различными длинами волн, и измеряется разница поглощений между 1 и 2 т.е. .

Схема стандартного двуволнового спектрофотометра приведена на рис. 8. Разрешение по длине волны здесь, в отличие от светосилы, имеет второстепенное значение. Поэтому в качестве «монохроматора» двуволнового спектрофотометра вполне подойдут узкополосные интерференционные фильтры. Они обладают большей светосилой, чем решеточные монохроматоры. Два луча света с длинами волн 1 и 2 посредством колеблющегося с частотой от 30 до 100 Гц зеркала попеременно облучают образец. Соответствующие сигналы I( 1) и I( 2) поступают на вход фазочувствительного усилителя, выходной сигнал которого после определенного преобразования подается для обработки на компьютер.

Рис. 8. Схема типичного двуволнового спектрофотометра.

 Два ортогональных  луча, излучаемые одной лампой, разделяются, коллимируются и диспергируются интерференционными фильтрами с длинами волн пропускания 1 и 2. Далее лучи света фокусируются на маленькое колеблющееся зеркало (типичная частота колебания составляет 120 Гц). Генерированная последовательность световых импульсов длин волн 1, 2, 1, 2, … в большей степени поглощается оптически плотным образцом, а малая интенсивность прошедшего света детектируется фотоумножителем. Выходной сигнал фотоумножителя преобразуется синхронным усилителем и подается на компьютер для обработки. Использование полупрозрачного зеркала и соответствующего блокирующего фильтра между образцом и детектором, чрезвычайно малого светового излучателя (актиничной лампы с интерфильтром 3) позволяет распознавать чрезвычайно низкие изменения поглощения ( А < 0,0001) при большом оптическом фоне (Е » 4). Кювета с образцом находится в специальном термостатированном держателе, гарантирующем постоянную температуру измерений.

2.2.4.Спектрофотометры с фотодиодной решеткой

 

Особым типом спектрофотометров являются приборы с фотодиодной решеткой или матрицей (PDA). Здесь свет от источника направляется непосредственно на образец и уже после этого — на дифракционную решетку, которая проецирует разложенный по поддиапазонам свет на фотодиодную решетку или матрицу. Последние содержат определенное количество фотодиодных датчиков, преобразующих световую энергию в электрические импульсы. Поэтому любой диапазон длин волн при подобной конструкции спектрофотометра дает свой "отклик" практически мгновенно, а не последовательно, как это имеет место в традиционной спектрофотометрии. Электрические импульсы с фотодиодов обычно обрабатываются микрокомпьютером с выводом результатов на дисплей. В зависимости от используемого для работы диапазона волн используются дейтериевая и/или вольфрамовая лампы.

Количество фотодиодов определяет разрешающую способность спектрофотометрического прибора. Применение фотодиодной решетки является важным элементом проведения кинетических исследований, что позволяет одновременно производить замеры исследуемого субстрата и образующегося в ходе реакции продукта при различных длинах волн. Использование данной схемы обеспечивает высокое быстродействие при работе спектрофотометра в режиме сканирования: менее одной секунды на диапазон сканирования.

 

3.Устройство и основные узлы спектрофотометра

3.1.Устройство спектрофотометра

 


Рис 9.: 1 — источник световой энергии (видимая область); 2  — поворотный отражатель; 3 — источник световой энергии (ультрафиолетовая область); 4 — оптическая система, направляющая поток энергии на входную щель; 5 — входная щель; 6 — оптическая система, формирующая параллельный поток световой энергии; 7 — диспергирующий элемент (призма или дифракционная решетка); 8 — оптическая система, направляющая поток энергии на выходную щель; 9 — выходная щель; 10 — оптическая система, формирующая поток энергии, проходящий через кювету; 11 — кювета; 12 — фотоприемник; 13 — аналого-цифровой преобразователь; 14 — микро-ЭВМ; 15 — индикатор; 16 — пульт оператора; 17 — интерфейс связи с внешней ЭВМ и регистрирующим устройством

 

Поворотный отражатель (2) направляет поток световой энергии от одного из источников (1 или 3), через оптическую систему (4) на входную щель (5) монохроматора. С выхода монохроматора через щель (9) поступает монохроматический поток световой энергии с определенной длиной волны λ. Установка необходимой длины волны чаще всего осуществляется путем изменения угла падения полихроматического потока световой энергии по отношению к плоскости диспергирующего элемента (7). Оптическая система (10) формирует световой поток таким образом, чтобы при минимально допустимом объеме исследуемого раствора и многократной установке кюветы (11) в кюветное отделение геометрия потока не изменилась.

Полихроматический свет от источника проходит через монохроматор, который разлагает белый свет на цветовые компоненты. Монохроматическое излучение с дискретным интервалом в несколько нанометров проходит через ту часть прибора, где располагается образец с исследуемой пробой.

3.2.Основные узлы спектрофотометра

3.2.1. Источник света

 

Спектрофотометр UV/VIS (ультрафиолет + видимый свет) имеет два источника света: для видимого участка спектра и источник ультрафиолета — от 200 до 390 нм.

Источником видимого света служит вольфрамовая, как правило, галогенная лампа, дающая постоянный поток света в диапазоне 380— 950 нм, являясь стабильным и долговечным источником световой энергии со средним сроком службы более 500 ч.

В качестве источника УФ используются водородные или дейтериевые лампы. Ультрафиолетовые лампы, содержащие дейтерий, имеют высокую интенсивность излучаемого потока и непрерывный спектр в диапазоне от 200 до 360 нм.

3.2.2. Кюветы

 

Как известно исследуемый образец помещается в специальные приставки. Для каждого вида образцов они разные. Для твердых – это специальные зажимы, а при спектральных измерениях жидких образцов используются специальные контейнеры из кварцевого стекла, так называемые кюветы.

В большинстве спектрофотометров применяются стандартные кюветы, которые предназначены для такого размещения, которое предусматривает горизонтальную траекторию луча света. Основным недостатком подобных кювет является то, что только небольшая часть образца (около 10%) освещается измеряющим светом. В случае большой ценности образца или доступности его в небольшом объеме, можно использовать микрокюветы или ультрамикрокюветы с объемом 50 или даже 2,5 мкл. Кюветы очень маленьких объемов проявляют капиллярные свойства, и возникают проблемы с образованием пузырьков воздуха, что требует дегазации. Наконец, из таких кювет сложно извлечь обратно образец. Стандартные кюветы имеют внешние размеры: 12,5 12,5 45 мм, а внутренние — 10 10 мм. Кюветы с меньшим внутренним объемом, выпускаемые одним производителем имеют тот же внешний размер, что и стандартные, но внутренний, например 10 1,25 мм.

3.2.3. Диспергирующий элемент

 

В спектрофотометрах в качестве диспергирующего элемента чаще всего используют призмы и дифракционные решетки.

Дифракционная решетка технологически более сложное изделие, чем призма. Большинство применяемых в настоящее время решеток изготовлены способом выжигания и голографического копирования и представляют собой пластины с большим числом параллельных штрихов — до нескольких сот на миллиметр.

Основным преимуществом использования призмы в спектрофотометре является ее низкая стоимость.

Преимущество дифракционных решеток состоит в том, что они обеспечивают линейную дисперсию света на всем диапазоне видимого и УФ спектров. Отрицательным моментом применения дифракционных решеток является их высокая стоимость в сравнении с призмами и светофильтрами.

Одной из самых важных характеристик монохроматоров является полоса пропускания, выражаемая в единицах длин волн — нанометрах.

Если интерференционные фильтры дают ширину пропускания в диапазоне 6—20 нм, то призмы и дифракционные решетки дают более узкую полосу — менее 5 нм, а следовательно, и большую «чистоту» (монохромность) света, падающего на кювету с образцом. Полоса пропускания является одной из важнейших характеристик спектрофотометра. Уменьшение полосы пропускания влечет за собой повышение разрешающей способности спектрофотометра — значимой характеристики качества спектрофотометрических приборов.

 

 

3.2.4. Монохроматоры

 

Действие спектральных приборов — спектрофотометров — основано на том, что в некоторых физических системах условия прохождения света оказываются различными. Такие системы называются диспергирующими. Обычно в качестве диспергирующего элемента используют призму или дифракционную решетку. Устройства, позволяющие разделить полихроматический свет на монохроматический спектр излучения, называются монохроматорами (рис. 10).

Рис.Функциональная схема монохроматора с призмой.

1-входная щель; 2-объектив, формирующий параллельный поток световой энергии; 3-призма; 4 - объектив, направляющий поток энергии на экран; 5 - экран; 6 - выходная щель

Щель (1), на которую падает полихроматический поток световой энергии, находится в фокальной плоскости линзы (2). Эта часть прибора называется коллиматором. Выходящий из объектива (2) параллельный поток световой энергии падает на призму (3). Вследствие дисперсии (обусловленной зависимостью показателя преломления от длины волны) свет различных длин волн выходит из призмы под разными углами. Если в фокальной плоскости линзы объектива (4) поставить экран (5), то линза сфокусирует параллельные потоки энергии для различных длин волн в разных местах экрана. Поворачивая призму (3), можно просканировать через щель (6) монохроматические потоки энергии во всем спектре излучения. Часто в качестве диспергирующего элемента используется дифракционная решетка, которая представляет собой стеклянную или металлическую пластину, на которой нанесены параллельные одинаковые штрихи, расположенные на строго одинаковых расстояниях друг от друга. На рис.11 показана дифракционная решетка, состоящая из чередующихся параллельных друг другу щелей одинаковой ширины b, расположенных на одинаковом расстоянии a друг от друга. Сумма (a+b) является периодом этой структуры и называется постоянной решетки d.


РРис.11Функциональная схема монохроматора с дифракционной решеткой.

1 — входная щель; 2 —  объектив, формирующий параллельный  поток световой энергии; 3 — дифракционная  решетка; 4 — объектив, направляющий  поток энергии на экран; 5 —  экран; 6 — выходная щель

Через входную щель (1) полихроматический поток световой энергии линзой объектива (2) трансформируется в параллельный поток, который проходит через щели дифракционной решетки (3). В каждой точке на экране (5), расположенном в фокальной плоскости линзы объектива (4), соберутся те лучи, которые до линзы были параллельными между собой и распространялись под определенным углом Q к направлению падающей волны. Поэтому освещенность в точке Р на экране (5) определяется результатом интерференции вторичных волн, распространяющихся как от разных участков одной щели, так и от разных щелей. Существует направление, распространяясь по которому, вторичные волны от всех щелей будут приходить в точку Р в одной фазе и усиливать друг друга, и другое — когда волны не совпадают по фазе и ослабляют друг друга. Таким образом, на экране наблюдается чередование светлых и темных полос. Условие формирования максимумов от дифракционной решетки, то есть когда волны усиливают друг друга при интерференции, наблюдается тогда, когда разность хода равна целому числу волн. Зависимость формирования максимумов различных длин волн от угла Q дифракционной решетки выражается формулой: d*sinQ = k- 1, где k= 0, 1, 2 ...

Если на решетку падает свет разных длин волн, то максимумы для различных длин волн располагаются под различными углами Q к первоначальному направлению распространения света. Поэтому дифракционная решетка разлагает полихроматический свет в дифракционный спектр и употребляется как диспергирующий прибор.

 

4.Метрологическое обеспечение спектрофотометров

 

4.1 Методика поверки

Поверку спектрофотометров проводят органы Государственной метрологической службы или другие уполномоченные органы, организации, имеющие право поверки. К проведению поверки допускают лиц, аттестованных в качестве поверителя в установленном порядке, изучивших Национальный стандарт и эксплуатационную документацию на применяемые средства поверки и спектрофотометры и прошедших инструктаж по технике безопасности.

    Межповерочный интервал  для спектрофотометров составляет один год.

 

4.1.1 Требования  безопасности

При проведении поверки должны быть соблюдены требования безопасности, предусмотренные в соответствующих разделах эксплуатационной документации на применяемые средства поверки и поверяемый спектрофотометр.

 

4.1.2 Условия  поверки и подготовка к ней

 

При проведении поверки соблюдают следующие условия:

 

- температура окружающего воздуха, °С                                             20 ±5;

 

- относительная влажность воздуха, %                                                           60 ±10;

 

- атмосферное давление, кПа                                                                84...107;

 

- напряжение сети электрического  питания, В                                  220 ± 22;

 

- частота сети электрического питания, Гц                                        50 ±0,5.

 

Источники теплового излучения должны находиться на расстоянии не менее 1,5 м от спектрофотометра.

Спектрофотометр должен быть заземлен.

Время предварительного прогрева спектрофотометров типов ИКС-24 и ИКС-29 должно быть не менее 45 мин, а типов ИКС-22, ИКС-22А и ИКС-22В - не менее 2 ч.

Средства поверки готовят к работе в соответствии с их эксплуатационной документацией.

 

4.1.3 Проведение  поверки

 

4.1.4.1 Внешний осмотр.

          При  проведении внешнего осмотра устанавливают:

- соответствие комплектности спектрофотометра  паспортным данным на спектрофотометр  конкретного типа. При периодической  поверке допускается отсутствие  ЗИП, кроме пленки полистирола  для спектрофотометров талон  ИКС-22, ИКС-22А, ИКС-24 и ИКС-29;

- наличие четких надписей и  отметок на шкалах и органах  управления;

Информация о работе Разработка локальной поверочной схемы. Физические принципы спектрофотометрии Устройство спектрофотометра