Історія розвитку теорії ймовірностей

Автор: Пользователь скрыл имя, 04 Апреля 2013 в 19:08, курсовая работа

Краткое описание

Ми ж розглянемо динаміку розвитку визначення поняття ймовірності; такого поняття в теорії ймовірностей, як математичне очікування, а також відомого закону великих чисел.
Простеживши розвиток цих понять від найпростіших уявлень до закінчених і обміркованих їхніх форм, ми зможемо глибше зрозуміти їхній зміст, що, безсумнівно, важливо з методичної точки зору.

Оглавление

Вступ…………………………………………………………………..….…3
1. Динаміка розвитку поняття ймовірності………………………….……5
1.1 Перші спроби введення поняття ймовірності…………..……...5
1.2 Поява класичного визначення поняття ймовірності……..……8
1.3 Перші спроби введення аксіоматичного визначення поняття ймовірності.…………………………………………..……………..11
1.4 Поява аксіоматичного визначення поняття ймовірності………………………………………………………….14
2. Динаміка розвитку поняття математичного очікування……….……17
2.1 Передумови введення поняття математичного очікування…..………………………………………………………17
2.2 Введення поняття математичного очікування і його подальший розвиток………….……………………………..…..…17
3. Закон великих чисел……………………………………………………21
3.1 Первісне осмислення статистичної закономірності…………………………………………………...…21
3.2 Поява теорем Бернуллі й Пуассона - найпростіших форм закону великих чисел…………..………………………….….……21
3.3 Нерівність Чебишева. Закон великих чисел у формі Чебишева...……………………………………………………….....29
Висновки…………………………………………………………………..35
Список використаної літератури...........…………………………………37

Файлы: 1 файл

Реферат Кирилюк.doc

— 400.00 Кб (Скачать)

«Якщо явище зовсім залежить від декількох інших явищ або випадків, з яких одні можуть його зробити, інші йому противні, і якщо притім всі ці випадки такі, що для нас, ми повторюємо, для нас, немає причини одні з них воліти іншим, то ймовірність очікуваного явища виміряється дробом, який чисельник дорівнює числу випадків, що доставляють явище, – а знаменник числу всіх випадків». Це твердження збігається з так званим класичним визначенням Лапласа із тлумаченням рівної можливості, як недостатності підстав давати перевага одним подіям перед іншими. Розглядається приклад. В урні перебуває 5 куль (3 білих і 2 чорних), з її витягає одну кулю. Яка ймовірність, що ця куля буде білим? Щодо цього приклада Остроградський пише: «П'ять куль перебувають у вазі; немає ніякої причини думати, що один з них потрапить у руку скоріше, ніж іншої. Говорячи, немає ніякої причини, розуміємо, що її немає для нас, – вона є, але зовсім нам невідома.… І як ми не можемо дати одній кулі перевага перед іншим, те всі кулі представляють для нас випадки рівно можливі. Той, хто знав би розташування куль в урні й міг би обчислити рух руки, що виймає, той сказав би наперед, який саме вийде куля, - для нього не було б імовірності.

Якби для нас, справді, не було причин вийняти такий-то куля, а не інший, тоді поява кулі бути б дійсно неможливо, як неможлива дія без причини.

Ми повторюємо, що ймовірність і однакова можливість випадків, і міра ймовірності існують тільки для нас. Для істот же всевідаючих, тобто відомості, що має всі, про всі явища, імовірність не може мати не тільки міри, але й ніякого значення.

Це висловлення є типовим висловленням у дусі механічного детермінізму, що був у той час широко розповсюджений у теорії ймовірностей.

1.3 Перші спроби введення аксіоматичного визначення поняття ймовірності

П. Л. Чебишев (1821–1894 р.) був творцем і ідейним керівником петербурзької математичної школи. Чебишев зіграв велику роль у розвитку багатьох розділів математики, у тому числі теорії ймовірностей. У своїй магістерській дисертації в першому розділі він уводить поняття ймовірності. Для цього він, насамперед, визначає рівно можливі події: «Якщо з певного числа різних подій при відомих обставинах один необхідно повинне трапитися, і немає особливої причини очікувати якого-небудь із цих подій переважно перед іншими, те такі події відрізняємо назвою випадків рівно можливих». Не можна сказати, щоб це визначення було досить чітке.

Якщо з n випадків m мають як наслідок деяка подія, то мірою ймовірності цієї події, що називають імовірним, приймають , тобто «відношення числа рівно можливих випадків, сприятливих для події, до числа всіх рівно можливих випадків».

А.А. Марков (1856–1922 р.) був найближчим учнем і кращим виразником ідей Чебишева. У своїй роботі «Вирахування ймовірностей» Марков давав класичне визначення ймовірності, але до визначення рівної можливості («Дві події ми називаємо рівно можливими, якщо немає ніяких підстав очікувати одного з них переважно перед іншим. Кілька подій ми називаємо рівно можливими, якщо кожні два з них рівно можливі») він робив наступну примітку: «На мою думку, різні поняття визначаються не стільки словами, кожне з яких може, у свою чергу, зажадати визначення, як нашим відношенням до них, що з'ясовується поступово». Визначення поняття ймовірності виглядає так:

«Імовірністю події називається дріб, чисельник якої представляє число рівно можливих випадків, сприятливих цій події, а знаменник-число всіх рівно можливих випадків, що відповідають питанню». [1,2]

У своїй книзі «Теорія ймовірностей» С.Н. Бернштейн спробував увести визначення поняття ймовірності аксіоматичним способом.

З аксіоми порівняння ймовірностей і аксіоми про несумісні події Бернштейн робить наступний висновок: «Якщо події X сприяють m випадків із загального числа всіх n єдино можливих, несумісних і рівно можливих випадків, то ймовірність події X залежить тільки від чисел m і n (а не від природи розглянутого досвіду), тобто ймовірність X=F (m, n), де F (m, n) є деяка певна функція».

Але, цим аксіомам задовольняє тільки функція виду F( ), причому-це зростаюча функція дробу . Будь-яку таку функцію F( ) можна прийняти за ймовірність X. Загальноприйняте вважати F( )= . Це і є ймовірність події X у висловлених умовах, а точніше класичне визначення ймовірності.

Із упевненістю можна сказати, що визначення поняття ймовірності лежить в основі будь-якої аксіоматичної системи теорії ймовірностей. На недоліки класичного визначення ймовірності вказували давно. Були видні й недоліки суб'єктивного трактування ймовірності, що йде від Лапласа. Критикові цих недоліків зустрічали доброзичливо. Найбільш широке поширення одержали роботи в цьому напрямку німецького вченого Р. Мизеса (1883–1953 р.), що з гітлерівської Німеччини емігрував у США, де він очолив Інститут прикладної математики. Мизес є засновником так званої частотної концепції в теорії ймовірностей.

Основним поняттям у частотній теорії Мизеса є поняття колективу. Під колективом розуміється нескінченна послідовність k-однакових спостережень, кожне з яких визначає деяку крапку, що належить заданому простору кінцевого числа вимірів. Говорити про ймовірність, по Мизесу, можна тільки тоді, коли існує ця певна сукупність подій. Колектив, по Мизесу, "...повинен задовольняти наступним двом вимогам:

відносні частоти появи певної події в послідовності незалежних випробувань мають певні граничні значення;

граничні значення, про які говориться в першій вимозі, залишаються незмінними, якщо із всієї послідовності вибрати будь-яку підпослідовність.

Взявши за основу той факт, що ймовірність і частота - зв'язані між собою величини, Мизес визначає ймовірність як граничне значення частоти: «Обґрунтоване припущення, що відносна частота появи кожного одиничного спостережуваної ознаки прагне до певного граничного значення. Це граничне значення ми називаємо ймовірністю».

Але насправді ніякого обґрунтованого припущення в нас немає. Ми ніколи не можемо знати, чи має дана частота чи межа ні, хоча б уже тому, що для цього довелося б зробити нескінченне число досвідів. Це визначення неспроможне математично, тому що ми не можемо вказати функціональної залежності між кількістю випробувань n і частотою появи подій , де m-кількість появ події, а, не вказавши такої залежності, ми не можемо обчислити межу, , що прийнята за ймовірність.

Найбільші представники теорії ймовірностей ніколи не були прихильниками частотної школи, а прихильники цієї школи не одержали істотних результатів у теорії ймовірностей.

Спроб обґрунтувати теорію ймовірностей було досить багато. Наприклад, італійський математик Б. Финетті висунув суб'єктивне тлумачення ймовірності. Таким підходом до ймовірності він намагався перебороти протиріччя, які виникли й у класичній теорії ймовірностей і в частотній школі Мизеса. По Финетті ймовірність є чисто суб'єктивною величиною. Кожна людина по-своєму оцінює ймовірність тієї або іншої події.

Трохи пізніше Джеффрис розробляв поняття ймовірності як ступеня правдоподібності. Уперше ця концепція була висунута Кейнесом в 1921 р. По цій теорії кожна пропозиція має певну ймовірність. Ймовірностям такого роду не можна дати частотної інтерпретації. Розробка теорії ступенів правдоподібності триває деякими математиками й у наші дні.

1.4 Поява аксіоматичного визначення поняття ймовірності

На сьогоднішній день закріпилося визначення поняття ймовірності дане А.Н. Колмогоровим у книзі «Основні поняття теорії ймовірностей» (1933 р.) аксіоматично.

Уже були розкриті глибокі аналогії між поняттями теорії ймовірностей і поняттями метричної теорії функцій. Були встановлені аналогії між множиною й подією, мірою множини й імовірністю події, інтегралом і математичним очікуванням і ін.

Виникла потреба в теорії ймовірностей виходячи з уявлень, що й було виконано в книзі Колмогорова. Після цієї аксиоматизації теорія ймовірностей зайняла рівноправне місце серед інших математичних дисциплін.

Розглянемо аксіоматику Колмогорова.

Нехай є спостереження або випробування, які хоча б теоретично допускають можливість необмеженого повторення. Кожне окреме випробування може мати той або інший результат залежно від випадку. Сукупність всіх цих можливих рішень утворить множина E, що є першим основним поняттям аксіоматики. Це множина E називається множиною елементарних подій. Що із себе представляють події, що є елементами цієї множини, для подальшої логічної побудови зовсім байдуже, як байдуже для аксіоматичної побудови геометрії, що ми будемо розуміти під словами «крапка», «пряма» і т.п. Тільки після такої аксіоматичної побудови теорія ймовірностей допускає різні інтерпретації, у тому числі й не зв'язані з випадковими подіями. Будь-яка підмножина множини E, тобто будь-яку сукупність можливих рішень, називають подією. Або іншими словами: випадковими подіями називаються елементи множини F підмножин з E. Далі розглядаються не всі події, а тільки деяке тіло подій. Теорія ймовірностей займається тільки тими подіями, частота яких стійка. Це положення в аксіоматичній теорії Колмогорова формалізується таким чином, що кожній події, що ми розглядаємо, ставиться у відповідність деяке позитивне число, що називається ймовірністю даної події. При цьому абстрагуються від усього того, що допомагало сформулювати це поняття, наприклад, від частоти. Це дає можливість інтерпретувати ймовірність не тільки імовірнісним способом. Тим самим значно розширюються можливості ймовірностей.

Сформулюємо аксіоми Колмогорова [1,5]. Якщо випадкові події A і B входять до складу F, то події A або B, A і B, не A і не B також утримуються в F. F містить як елементи множина E і всі окремі його елементи.

Кожному елементу A з F поставлено у відповідність ненегативне речовинне число P(A), називане ймовірністю події A.

P(E)=1.

Якщо A і B не перетинаються й належать F, то P (A+B)=P(A)+P(B). Для нескінченних множин F є ще одна аксіома, що для кінцевих множин є наслідком п'яти наведених аксіом.

Якщо перетинання послідовності подій порожньо, то .

Аксіоматика Колмогорова сприяла тому, що теорія ймовірностей остаточно зміцнилася як повноправна математична дисципліна.

Простеживши динаміку розвитку й формування поняття ймовірності можна зробити висновок, що воно вироблялося складними шляхами. Математики й філософи, політики й просто захоплені теорією ймовірностей учені намагалися наділити поняття ймовірності в конкретну форму. Даючи правильні й помилкові визначення поняттю ймовірності, вони маленькими кроками просувалися до вірного рішення цього питання. Але навіть у добре й правильно сформульованих варіантах класичного визначення ймовірності можна виявити пробіли й недогляди. Наприклад, майже у всіх даних варіантах класичного визначення відсутнє умова кінцівки числа рівно можливих подій, тобто умова, що . Можливо ця умова не обмовлялася, але малося на увазі. З побудовою системи аксіом для визначення поняття ймовірності задача деякої неспроможності класичного визначення ймовірності була вирішена. Однак спостерігаються спроби дати трактування ймовірності з більше широких позицій, у тому числі й з позицій теорії інформації.

 

2. Динаміка розвитку поняття математичного очікування

2.1 Передумови введення поняття математичного очікування

Одним з перших наблизився до визначення поняття математичного очікування Д. Кардано у своїй роботі «Книга про гру в кості». Він визначив умови необразливої гри, які можна побачити на наступному прикладі Кардано: кидаються дві гральні кістки. «Якщо, стало бути, хто-небудь заявить, що він бажав би одержати 1, 2 або 3, то ти знаєш, що для цього є 27 шансів, а тому що вся серія складається з 36, то залишається 9 кидань, у яких ці числа окулярів не випадуть; таким чином, ці числа будуть перебувати в потрійному відношенні. Отже, при чотирьох киданнях три випадання будуть сприятливі 1, 2 або 3, і тільки один раз не вийде жодного із трьох зазначених чисел окулярів. Якщо той, хто чекає випадання одного із трьох зазначених чисел окулярів, поставить три асів (давньоримські мідні монети), а другий один, то спочатку перший виграє тричі й одержить три асів, а потім другий виграє один раз і одержить три асів; таким чином, у загальному підсумку чотирьох кидань шанси їх завжди зрівняються. Стало бути, такі умови розрахунку в грі - правильні; якщо ж другий з них поставить більше, те йому доведеться боротися в грі на нерівних умовах і зі збитком для себе; а якщо він поставить менше, те з баришем.» Однак Кардано розуміє, що ці твердження справедливі тільки тоді, коли гра буде тривати досить довго [1].

2.2 Введення поняття математичного очікування і його подальший розвиток

Звернемося до роботи Х. Гюйгенса «Про розрахунок в азартних іграх». Книга складається із введення й 14 пропозицій. Розглянемо перші три пропозиції [1].

Пропозиція 1: „Якщо я маю рівні шанси одержання a або b, те це мені коштує „.

Пропозиція 2: „Якщо я маю рівні шанси на одержання a, b або c, те це мені коштує стільки ж, як якби я мав .”

Пропозиція 3: „Якщо число випадків, у яких виходить сума a, дорівнює p і число випадків, у яких виходить сума b, дорівнює q, і всі випадки однаково легко можуть відбутися, то вартість мого очікування дорівнює .”

По суті Гюйгенс тут так визначає математичне очікування. Він фактично вперше вводить поняття математичного очікування й використовує його. Математичне очікування є узагальненням поняття середньої арифметичної. Середня арифметична широко застосовувалася в торгівлі й промисловості для визначення середніх цін, середнього прибутку й т.п.

Термінологія Гюйгенса в теорії ймовірностей несе на собі відбиток комерційної термінології. Він уважає, що математичне очікування - це ціна шансу на виграш у необразливій грі й доходить висновку, що справедлива ціна - є середня ціна. Він обчислює «за яку справедливу ціну я міг би поступитися своє місце в грі іншому». Сам Гюйгенс не називає математичне очікування очікуванням, воно в нього фігурує як вартість шансу. Уперше термін «очікування» з'являється в перекладі роботи Гюйгенса Францем ван Схоутеном.

Робота Х. Гюйгенса дуже вплинула на Я. Бернуллі. До пропозицій 1, 2 і 3 Гюйгенса Бернуллі робить велика примітка.

«Автор цього трактату викладає ...у цьому й двох наступних пропозиціях основний принцип мистецтва припущень. Тому що дуже важливо, щоб цей принцип був добре зрозумілий, то я спробую довести його за допомогою вирахувань більше звичайних і більше доступних всім, виходячи винятково з тієї аксіоми, або визначення, що кожний повинен очікувати або припускає очікувати стільки скільки він неминуче одержить.

Слово «очікування» тут не повинне розумітися в його звичайному змісті, відповідно до якого «очікувати» або «сподіватися» ставиться до події найбільш сприятливому, хоча може відбутися найгірше для нас; потрібно розуміти під цим словом надію, що ми маємо на одержання кращого, зменшеним страхом гіршого. Так що вартість нашого очікування завжди означає щось середнє між кращим, на що ми сподіваємося, і гіршим, чого ми боїмося...»

Після розгляду пропозиції 3 Бернуллі відзначає наступне: «З розгляду ...очевидно, що є велика подібність із правилом, називаним в арифметиці правилом товариства, що складається в знаходженні ціни суміші, складеної з певних кількостей різних речей з різною ціною. Або, скоріше, що обчислення є абсолютно однаковими. Так, подібно тому, як сума добутків кількостей речовин, що змішуються, на їхні відповідні ціни, розділена на суму речовин, дає шукану ціну, що завжди перебуває між крайніми цінами, також сума добутків випадків на відповідно принесені ними вигоди, розділена на число всіх випадків, указує вартість очікування, що внаслідок цього завжди є «середньою між найбільшою й найменшою із цих вигод».

Информация о работе Історія розвитку теорії ймовірностей