Периодический закон Д.И.Менделеева и его значение в науке

Автор: Пользователь скрыл имя, 26 Октября 2011 в 17:59, реферат

Краткое описание

Периодический закон Менделеева и его обоснование с точки зрения электронного строения атомов. Открытие периодического закона и разработка периодической системы химических элементов Д. И. Менделеевым явились вершиной развития химии в XIX в. Обширная сумма знаний о свойствах 63 элементов, известных к тому времени, была приведена в стройный порядок. Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон:

Оглавление

ВВЕДЕНИЕ 4
1. ИСТОРИЯ ОТКРЫТИЯ ПЕРИОДИЧЕСКОГО ЗАКОНА 5
1.1. Триады Дёберейнера и первые системы элементов 6
1.2. Спираль де Шанкуртуа 7
1.3. Октавы Ньюлендса 8
1.4. Таблицы Одлинга и Мейера 9
2. ПЕРИОДИЧЕСКИЙ ЗАКОН 10
2.1. Структура Периодической системы
11
3. ПЕРИОДИЧЕСКИЕ СВОЙСТВА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ 14
4. ПРОЯВЛЕНИЯ ПЕРИОДИЧЕСКОГО ЗАКОНА В ОТНОШЕНИИ ЭНЕРГИИ ИОНИЗАЦИИ 16
4.1. Проявления периодического закона в отношении энергии сродства к электрону 17
4.2. Проявления периодического закона в отношении атомных и ионных радиусов 18
4.3. Проявления периодического закона в отношении энергии атомизации 19
4.4. Проявления периодического закона в отношении степени окисления 20
4.5. Проявления периодического закона в отношении окислительного потенциала 21
5. ВНУТРЕННЯЯ И ВТОРИЧНАЯ ПЕРИОДИЧНОСТЬ 22
6. ПЕРИОДИЧЕСКИЙ ЗАКОН - ОСНОВА ХИМИЧЕСКОЙ СИСТЕМАТИКИ 25
7. РАЗВИТИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА В XX ВЕКЕ 27
8.ТЕОРИЯ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ 28


9. ЗНАЧЕНИЕ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ И ТЕОРИИ СТРОЕНИЯ АТОМОВ 31
ЗАКЛЮЧЕНИЕ 34
СПИСОК ЛИТЕРАТУРЫ

Файлы: 1 файл

История открытия Периодического закона.doc

— 218.00 Кб (Скачать)

У переходных d-элементов  б-подгрупп достраиваются незавершённые  оболочки с n, на единицу меньшим  номера периода. Конфигурация внешних оболочек у них, как правило, ns2. Поэтому все d-элементы являются металлами. Аналогичная структура внешней оболочки d-элементов в каждом периоде приводит к тому, что изменение свойств d-элементов по мере роста Z не является резким и чёткое различие обнаруживается лишь в высших степенях окисления, в которых d-элементы проявляют определённое сходство с р-элементами соответствующих групп П. с. э. Специфика элементов VIIIб-подгруппы объясняется тем, что их d-подоболочки близки к завершению, в связи с чем эти элементы не склонны (за исключением Ru и Os) проявлять высшие степени окисления. У элементов Iб-подгруппы (Cu, Ag, Au) d-подоболочка фактически оказывается завершенной, но ещё недостаточно стабилизированной, эти элементы проявляют и более высокие степени окисления (до III в случае Au).

      В атомах лантаноидов и актиноидов происходит достройка ранее незавершённых f-подоболочек с n, на 2 единицы меньшим  номера периода; конфигурация внешние  оболочки сохраняется неизменной (ns2); f-электроны у лантаноидов не оказывают существенного влияния на химические свойства. Лантаноиды проявляют преимущественно степень окисления III (за счёт двух 6s-электронов и одного d-электрона, появляющегося в атоме La); однако такое объяснение не является достаточно удовлетворительным, так как 5d-электрон содержится только в атомах La, Ce, Gd и Lu; поэтому считается, что в др. случаях степень окисления III обусловлена переходом одного из 4f-электронов в 5d-подоболочку. Что касается актиноидов, то в интервале Z = 90—95 энергии связи электронов 6d и 5f оказываются весьма близкими, это объясняет способность элементов давать соединения в широком диапазоне степеней окисления — до VII у Np, Pu и Am. У актиноидов с Z ³ 96 предпочтительной становится степень окисления III. Оценка химических свойств К и и элемента 105 позволяет считать, что в этой области П. с. э. начинается систематическое заполнение 6d-подоболочки.

      Выше  были в общих чертах объяснены  причины и особенности периодического изменения свойств химических элементов  по мере роста Z. Это объяснение основано на анализе закономерностей реальной схемы формирования электронных конфигураций свободных атомов. Однако знание электронной конфигурации свободного атома часто не позволяет сделать однозначный вывод о важнейших химических свойствах, которые должен проявлять соответствующий элемент.

      Верхняя граница П. с. э. пока неизвестна, поэтому  неизвестно и конечное количество элементов, охватываемых П. с. э. Вопрос о пределе  искусственного синтеза элементов  также пока не решен. Все изотопы  уже известных элементов с Z ³ 101 являются короткоживущими (см. Ядерная химия). Однако существуют предположения, что ядра атомов гипотетических элементов с Z = 114, 126, 164 и 184 будут достаточно устойчивы по отношению к спонтанному делению. Это даёт основания рассчитывать на осуществление синтеза таких элементов. Оценка электронных конфигураций и важнейших свойств неизвестных элементов седьмого периода показывает, что эти элементы, по-видимому, должны быть аналогами соответствующих элементов шестого периода. Напротив, для восьмого периода (состоящего, согласно теории, из 50 элементов) предсказывается весьма сложный характер изменения химических свойств по мере роста Z, связанный с резким нарушением последовательности заполнения электронных подоболочек в атомах. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

9.ЗНАЧЕНИЕ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ И ТЕОРИИ СТРОЕНИЯ АТОМОВ 

      Периодический закон Д. И. Менделеева имеет исключительно  большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали  рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в периодической системе. Как указывал Н. Д. Зелинский, периодический закон явился «открытием взаимной связи всех атомов в мироздании».

Химия перестала  быть описательной наукой. С открытием  периодического закона в ней стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения. Блестящий пример тому — предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех — Ga, Sc, Ge — он дал точное описание их свойств.

      На  основе закона Д. И. Менделеева были заполнены  все пустые клетки его системы  с Z=1 до Z=92, а также открыты трансурановые  элементы. И сегодня этот закон  служит ориентиром для открытия или  искусственного создания новых химических элементов. Так, руководствуясь периодическим законом, можно утверждать, что если будет синтезирован элемент Z=114, то это будет аналог свинца (экасвинец), если будет синтезирован элемент Z=118, то он будет благородным газом (экарадон).

      Русский ученый Н. А. Морозов в 80-х годах XIX века предсказал существование благородных  газов, которые были затем открыты. В периодической системе они  завершают собой периоды и  составляют главную подгруппу VII группы. «До периодического закона, — писал Д. И. Менделеев, — элементы представляли лишь отрывочные случайные явления природы; не было повода ждать каких-либо новых, а вновь находимые были полной неожиданной новинкой. Периодическая законность первая дала возможность видеть неоткрытые еще элементы в такой дали, до которой невооруженное этой закономерностью зрение до тех пор не достигало».

      Периодический закон послужил основой для исправления  атомных масс элементов. У 20 элементов  Д. И. Менделеевым были исправлены атомные  массы, после чего эти элементы заняли свои места в периодической системе.На основе периодического закона и периодической системы Д. И. Менделеева быстро развивалось учение о строении атома. Оно вскрыло физический смысл периодического закона и объяснило расположение элементов в периодической системе. Правильность учения о строении атома всегда проверялась периодическим законом. Вот еще один пример. В 1921 г. Н. Бор показал, что элемент Z=72, существование которого предсказано было  Д. И. Менделеевым в 1870 г. (экабор), должен иметь строение атома, аналогичное атому циркония (Zr — 2. 8. 18. 10. 2; a Hf — 2. 8. 18. 32. 10. 2), а поэтому искать его следует среди минералов циркония. Следуя этому совету, в 1922 г. венгерский химик Д. Хевеши и голландский ученый Д. Костер в норвежской циркониевой руде открыли элемент Z=72, назвав его гафнием (от латинского названия г. Копенгагена — места открытия элемента).

      Это был величайший триумф теории строения атома: на основе строения атома предсказано  местонахождение элемента в природе.

Учение о строении атомов привело к открытию атомной энергии и использованию ее для нужд человека. Можно сказать, что периодический закон является первоисточником всех открытий химии и физики XX века. Он сыграл выдающуюся роль в развитии других, смежных с химией естественных наук.

      Периодический закон и система лежат в  основе решения современных задач  химической науки и промышленности. С учетом периодической системы  химических элементов Д. И. Менделеева ведутся работы по получению новых  полимерных и полупроводниковых  материалов, жаропрочных сплавов, веществ с заданными свойствами, по использованию ядерной энергии, используются недра Земли, Вселенной.

Велико педагогическое значение периодической системы  она — служит научной основой  преподавания химии в средней  и высшей школе.

      П. с. э. сыграла и продолжает играть огромную роль в развитии естествознания. Она явилась важнейшим достижением  атомно-молекулярного учения, позволила  дать современное определение понятия "химический элемент" и уточнить понятия о простых веществах  и соединениях. Закономерности, вскрытые П. с. э., оказали существенное влияние на разработку теории строения атомов, способствовали объяснению явления изотонии. С П. с. э. связана строго научная постановка проблемы прогнозирования в химии, что проявилось как в предсказании существования неизвестных элементов и их свойств, так и в предсказании новых особенностей химического поведения уже открытых элементов. П. с. э.— фундамент химии, в первую очередь неорганической; она существенно помогает решению задач синтеза веществ с заранее заданными свойствами, разработке новых материалов, в частности полупроводниковых, подбору специфических катализаторов для различных химических процессов и т.д. П. с. э.— также научная основа преподавания химии.

      Периодическая система элементов оказала большое влияние на последующее развитие химии. Она не только была первой естественной классификацией химических элементов, показавшей, что они образуют стройную систему и находятся в тесной связи друг с другом, но и явилась могучим орудием для дальнейших исследований.

      В то время, когда Менделеев на основе открытого им периодического закона составлял свою таблицу, многие элементы были еще неизвестнгы. Так, был неизвестен элемент 4 периода скандий. По атомной  массе вслед за Ca шел Ti, но Ti нельзя было поставить сразу после Ca, т.к. он попал бы в 3 группу, но по свойствам Ti должен быть отнесен к 4 группе. Поэтому Менделеев пропустил одну клетку. На том же основании в 4 периоде между Zn и As были оставлены две свободные клетки. Свободные места остались и в других рядах.

      Менделеев был не только убежден, что должны существовать неизвестные еще элементы, которые заполнят эти места, но и  заранее предсказал свойства таких  элементов, основываясь на их положении  среди других элементов периодической системы. Были даны этим элементам и названия экабор( так как свойства его должны были напоминать бор), экаалюминий, экасилициум.. 

      В течение следующих 15 лет предсказания Менделеева блестяще подтвердились; все  три ожидаемых элемента были открыты. Вначале французский химик Лекок де Буабодран открыл галлий, обладающий всеми свойствами экаалюминия. Вслед за тем в Швеции Л.Ф. Нильсоном был открыт скандий, и, наконец, спустя еще несколько лет в Германии К.А.Винклер открыл элемент, названный им германием, который оказался тождественным эаксилицию...

      Открытие Ga, Sc, Ge было величайшим триумфом периодического закона. Большое значение имела периодическая  система также при установлении валентности и атомных масс некоторых  элементов. Точно так же периодическая  система дала толчок к исправлению атомных масс некоторых элементов. Например, Cs раньше приписывали атомную массу 123,4. Менделеев же, располагая элементы в таблицу, нашел, что по своим свойствам Cs должен стоять в главной подгруппе первой группы под Rb и поэтому будет иметь атомную массу около 130. Современные определения показывают, что атомная масса Cs равна 132,9054..

И в настоящее  время периодический закон остается путеводной звездой химии. Именно на его основе были искусственно созданы  трансурановые элементы. Один из них- элемент №101, впервые полученный в 1955 г., - в честь великого русского ученого был назван менделевием..

Последующее развитие науки позволило, опираясь на периодический  закон, гораздо глубже познать строение вещества, чем это было возможно при жизни Менделеева.

      Блестящее подтверждение нашли пророческие слова Менделеева:"Периодическому закону не грозит разрушение, а обещаются только надстройка и развитие". 
 
 
 
 
 
 
 
 
 
 
 
 
 

ЗАКЛЮЧЕНИЕ 

      Открытие  Д. И. Менделеевым в 1869 г. Периодического закона (ПЗ) стало не только одним из крупнейших событий в истории химии XIX столетия, но и в известном смысле одним из самых выдающихся достижений человеческой мысли минувшего тысячелетия. И вместе с тем ПЗ и Периодическая система (ПС) химических элементов все еще остаются для нас загадкой. До сих пор не удается понять глубокие физические причины периодичности, в частности, причины периодической повторяемости сходных электронных конфигураций атомов, хотя ясно, что феномен этот связан с непространственной динамической симметрией атомных систем . До сих пор ясно не очерчены границы применимости ПЗ, и, в частности, не выяснено, какой тип свойств соединений какого структурного или топологического класса (или классов) изменяется периодически и почему. Продолжается полемика относительно верхней границы ПС и специфики ядерных и электронных свойств атомов сверхтяжелых элементов.

      Наконец, остается во многих отношениях загадочной сама история открытия ПЗ и создания ПС, хотя ей была посвящена обширная литература. Разными исследователями предлагались различные версии истории открытия ПЗ. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

СПИСОК  ЛИТЕРАТУРЫ 

1.      Хомченко И.Г. Общая химия: Учебник. – М.: ООО «Издательство Новая Волна», 1998, - 464 с.

2.      Химия: Справочные материалы:  Книга для учащихся/ Ю.Д.Третьяков, Н.Н. Олейников, Я.А. Кеслер  и др.; Под редакцией Ю.Д. Третьякова. – 3-е издание, переработанное. -М.: Просвещение, 1993. – 287 с., с 4 л. ил.

3.      Энциклопедический словарь юного  физика/составитель В.А. Чуянов.- М.: Педагогика, 1984. – 352 с. с ил.

Информация о работе Периодический закон Д.И.Менделеева и его значение в науке