Периодический закон Д.И.Менделеева и его значение в науке

Автор: Пользователь скрыл имя, 26 Октября 2011 в 17:59, реферат

Краткое описание

Периодический закон Менделеева и его обоснование с точки зрения электронного строения атомов. Открытие периодического закона и разработка периодической системы химических элементов Д. И. Менделеевым явились вершиной развития химии в XIX в. Обширная сумма знаний о свойствах 63 элементов, известных к тому времени, была приведена в стройный порядок. Менделеев считал, что основной характеристикой элементов являются их атомные веса, и в 1869 г. впервые сформулировал периодический закон:

Оглавление

ВВЕДЕНИЕ 4
1. ИСТОРИЯ ОТКРЫТИЯ ПЕРИОДИЧЕСКОГО ЗАКОНА 5
1.1. Триады Дёберейнера и первые системы элементов 6
1.2. Спираль де Шанкуртуа 7
1.3. Октавы Ньюлендса 8
1.4. Таблицы Одлинга и Мейера 9
2. ПЕРИОДИЧЕСКИЙ ЗАКОН 10
2.1. Структура Периодической системы
11
3. ПЕРИОДИЧЕСКИЕ СВОЙСТВА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ 14
4. ПРОЯВЛЕНИЯ ПЕРИОДИЧЕСКОГО ЗАКОНА В ОТНОШЕНИИ ЭНЕРГИИ ИОНИЗАЦИИ 16
4.1. Проявления периодического закона в отношении энергии сродства к электрону 17
4.2. Проявления периодического закона в отношении атомных и ионных радиусов 18
4.3. Проявления периодического закона в отношении энергии атомизации 19
4.4. Проявления периодического закона в отношении степени окисления 20
4.5. Проявления периодического закона в отношении окислительного потенциала 21
5. ВНУТРЕННЯЯ И ВТОРИЧНАЯ ПЕРИОДИЧНОСТЬ 22
6. ПЕРИОДИЧЕСКИЙ ЗАКОН - ОСНОВА ХИМИЧЕСКОЙ СИСТЕМАТИКИ 25
7. РАЗВИТИЕ ПЕРИОДИЧЕСКОГО ЗАКОНА В XX ВЕКЕ 27
8.ТЕОРИЯ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ 28


9. ЗНАЧЕНИЕ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ И ТЕОРИИ СТРОЕНИЯ АТОМОВ 31
ЗАКЛЮЧЕНИЕ 34
СПИСОК ЛИТЕРАТУРЫ

Файлы: 1 файл

История открытия Периодического закона.doc

— 218.00 Кб (Скачать)

     В марте 1869 г. русский химик Д. И. Менделеев  представил Русскому химическому обществу сообщение об открытии им Периодического закона химических элементов. В том  же году вышло первое издание менделеевского учебника «Основы химии», в котором была приведена его периодическая таблица. В конце 1870 г. он доложил РХО статью «Естественная система элементов и применение её к указанию свойств неоткрытых элементов», в которой предсказал свойства не открытых ещё элементов. Для предсказания свойств простых веществ и соединений Менделеев исходил из того, что свойства каждого элемента являются промежуточными между соответствующими свойствами двух соседних элементов в группе периодической таблицы (то есть сверху и снизу) и одновременно двух соседних элементов в периоде (слева и справа).

     В 1871 г. в итоговой статье «Периодическая законность химических элементов» Менделеев  дал следующую формулировку Периодического закона: «Свойства элементов, а потому и свойства образуемых ими простых  и сложных тел стоят в периодической зависимости от атомного веса». Тогда же Менделеев придал своей периодической таблице вид, ставший классическим.

     В отличие от своих предшественников, Менделеев не только составил таблицу  и указал на наличие несомненных  закономерностей в численных величинах атомных весов, но и решился назвать эти закономерности общим законом природы. Он взял на себя смелость на основании предположения, что атомная масса предопределяет свойства элемента, изменить принятые атомные веса некоторых элементов и подробно описать свойства неоткрытых ещё элементов. 
 
 
 
 
 
 

2.1.Структура Периодической системы 

     Современная (1975) П. с. э. охватывает 106 химических элементов; из них все трансурановые (Z = 93—106), а также элементы с Z = 43 (Tc), 61 (Pm), 85 (At) и 87 (Fr) получены искусственно. За всю историю П. с. э. было предложено большое количество (нескольких сотен) вариантов её графического изображения, преимущественно в виде таблиц; известны изображения и в виде различных геометрических фигур (пространственных и плоскостных), аналитических кривых (например, спирали) и т.д. Наибольшее распространение получили три формы П. с. э.: короткая, предложенная Менделеевым и получившая всеобщее признание, длинная, лестничная. Длинную форму также разрабатывал Менделеев, а в усовершенствованном виде она была предложена в 1905 А. Вернером. Лестничная форма предложена английским учёным Т. Бейли , датским учёным Ю. Томсеном (1895) и усовершенствована Н. Бором (1921). Каждая из трёх форм имеет достоинства и недостатки. Фундаментальным принципом построения П. с. э. является разделение всех химических элементов на группы и периоды.

     Каждая  группа в свою очередь подразделяется на главную (а) и побочную (б) подгруппы. В каждой подгруппе содержатся элементы, обладающие сходными химическими свойствами. Элементы а- и б-подгрупп в каждой группе, как правило, обнаруживают между собой определённое химическое сходство, главным образом в высших степенях окисления, которые, как правило, соответствуют номеру группы. Периодом называется совокупность элементов, начинающаяся щелочным металлом и заканчивающаяся инертным газом; каждый период содержит строго определённое число элементов. П. с. э. состоит из 8 групп и 7 периодов.

     Первого период содержит всего 2 элемента: H и He. Место H в системе неоднозначно: поскольку он проявляет свойства, общие со щелочными металлами и с галогенами, его помещают либо в Ia-, либо (предпочтительнее) в VIIa-подгруппу. Гелий — первый представитель VIIa-подгруппы (однако долгое время Не и все инертные газы объединяли в самостоятельную нулевую группу).

     Второй  период (Li — Ne) содержит 8 элементов. Он начинается щелочным металлом Li, единственная степень окисления которого равна I. Затем идёт Be — металл, степень окисления II. Металлический характер следующего элемента В выражен слабо (степень окисления III). Идущий за ним C — типичный неметалл, может быть как положительно, так и отрицательно четырёхвалентным. Последующие N, O, F и Ne — неметаллы, причём только у N высшая степень окисления V соответствует номеру группы; кислород лишь в редких случаях проявляет положительную валентность, а для F известна степень окисления VI. Завершает период инертный газ Ne.

     Третий  период (Na — Ar) также содержит 8 элементов, характер изменения свойств которых во многом аналогичен наблюдающемуся во втором периоде. Однако Mg, в отличие от Be, более металличен, равно как и Al по сравнению с В, хотя Al присуща амфотерность. Si, Р, S, Cl, Ar — типичные неметаллы, но все они (кроме Ar) проявляют высшие степени окисления, равные номеру группы. Таким образом, в обоих периодах по мере увеличения Z наблюдается ослабление металлического и усиление неметаллического характера элементов. Менделеев называл элементы второго и третьего периодов (малых, по его терминологии) типическими.

     По  современной терминологии,элементы этих периодов относятся к s-элементам (щелочные и щёлочноземельные металлы), составляющим Ia- и IIa-подгруппы (выделены на цветной таблице красным цветом), и р-элементам (В — Ne, At — Ar), входящим в IIIa — VIIIa. Для элементов малых периодов с возрастанием порядковых номеров сначала наблюдается уменьшение атомных радиусов, а затем, когда число электронов в наружной оболочке атома уже значительно возрастает, их взаимное отталкивание приводит к увеличению атомных радиусов. Очередной максимум достигается в начале следующего периода на щелочном элементе. Примерно такая же закономерность характерна для ионных радиусов.

     Четвёртый период (K — Kr) содержит 18 элементов (первый большой период, по Менделееву). После щелочного металла K и щёлочноземельного Ca (s-элементы) следует ряд из десяти так называемых переходных элементов (Sc — Zn), или d-элементов, которые входят в подгруппы б соответствующих групп П. с. э. Большинство переходных элементов (все они металлы) проявляет высшие степени окисления, равные номеру группы. Исключение — триада Fe — Co — Ni, где два последних элемента максимально положительно трёхвалентны, а железо в определённых условиях известно в степени окисления VI. Элементы, начиная с Ga и кончая Kr (р-элементы), принадлежат к подгруппам а, и характер изменения их свойств такой же, как и в соответствующих интервалах Z у элементов второго и третьего периодов. Установлено, что Kr способен образовывать химические соединения, но степень окисления VIII для него неизвестна.

     Пятый период (Rb — Xe) построен аналогично четвёртому; в нём также имеется вставка из 10 переходных элементов (Y — Cd), d-элементов. Специфические особенности периода: 1) в триаде Ru — Rh — Pd только рутений проявляет степень окисления VIII; 2) все элементы подгрупп а проявляют высшие степени окисления, равные номеру группы, включая и Xe; 3) у I отмечаются слабые металлические свойства. Таким образом, характер изменения свойств по мере увеличения Z у элементов четвёртого и пятого периодов более сложен, поскольку металлические свойства сохраняются в большом интервале порядковых номеров.

     Шестой  период (Cs — Rn) включает 32 элемента. В нём помимо 10 d-элементов (La, Hf — Hg) содержится совокупность из 14 f-элементов, лантаноидов, от Ce до Lu (символы чёрного цвета). Элементы от La до Lu химически весьма сходны. В короткой форме П. с. э. лантаноиды включаются в клетку La и записываются отдельной строкой внизу таблицы. Этот приём несколько неудобен, поскольку 14 элементов оказываются как бы вне таблицы. Подобного недостатка лишены длинная и лестничная формы П. с. э., хорошо отражающие специфику лантаноидов на фоне целостной структуры П. с. э. Особенности периода: 1) в триаде Os — Ir — Pt только осмий проявляет степень окисления VIII; 2) At имеет более выраженный (по сравнению с 1) металлический характер; 3) Rn, по-видимому (его химия мало изучена), должен быть наиболее реакционноспособным из инертных газов.

     Седьмой период, начинающийся с Fr (Z = 87), также должен содержать 32 элемента, из которых пока известно 20 (до элемента с Z = 106). Fr и Ra — элементы соответственно Ia- и IIa -подгрупп (s-элементы), Ac — аналог элементов IIIб -подгруппы (d-элемент). Следующие 14 элементов, f-элементы (с Z от 90 до 103), составляют семейство актиноидов. В короткой форме П. с. э. они занимают клетку Ac и записываются отдельной строкой внизу таблицы, подобно лантаноидам, в отличие от которых характеризуются значительным разнообразием степеней окисления. В связи с этим в химическом отношении ряды лантаноидов и актиноидов обнаруживают заметные различия. Членами б-подгрупп должны быть и последующие элементы до Z = 112, а далее (Z = 113—118) появятся р-элементы (IIIa — VIlla-подгруппы). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.ПЕРИОДИЧЕСКИЕ СВОЙСТВА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ 

     В принципе, свойства химического элемента объединяют все без исключения его характеристики в состоянии свободных атомов или ионов, гидратированных или сольватированных, в состоянии простого вещества, а также формы и свойства образуемых им многочисленных соединений. Но обычно под свойствами химического элемента подразумевают, во-первых, свойства его свободных атомов и, во-вторых, свойства простого вещества. Большинство этих свойств проявляет явную периодическую зависимость от атомных номеров химических элементов. Среди этих свойств наиболее важными, имеющими особое значение при объяснении или предсказании химического поведения элементов и образуемых ими соединений являются:

энергия ионизации  атомов, представляет собой наименьшую энергию, необходимую для удаления электрона от свободного атома в его низшем энергетическом (основном) состоянии на бесконечность. Энергия ионизации является одной из главных характеристик атома, от которой в значительной степени зависят природа и прочность образуемых атомом химических связей.

     От  энергии ионизации атома существенно  зависят также восстановительные свойства соответствующего простого вещества. На энергию ионизации атома наиболее существенное влияние оказывают следующие факторы: эффективный заряд ядра; являющийся функцией числа электронов в атоме, экранирующих ядро и расположенных на более глубоко лежащих внутренних орбиталях; радиальное расстояние от ядра до максимума зарядовой плотности наружного, наиболее слабо связанного с атомом и покидающего его при ионизации электрона; мера проникающей способности этого электрона; межэлектронное отталкивание среди наружных (валентных) электронов.

     Энергия сродства атомов к электрону ( сродством к электрону (ε), называют энергетический эффект процесса присоединения электрона к свободному атому Э в его основном состоянии с превращением его в отрицательный ион Э- (сродство атома к электрону численно равно, но противоположно по знаку энергии ионизации соответствующего изолированного однозарядного аниона). Э + e- = Э- + ε

     Сродство  к электрону выражают в килоджоулях  на моль (кДж/моль) или в электронвольтах на атом (эВ/атом).В отличие от ионизационного потенциала атома, имеющего всегда эндоэнергетическое значение, сродство атома к электрону описывается как экзоэнергетическими, так и эндоэнергетическими значениями). Электроотрицательность (фундаментальное химическое свойство атома, количественная характеристика способности атома в молекуле притягивать к себе общие электронные пары.). Атомные радиусы, в настоящее время принято задавать этот размер в пикометрах (1 pm = 10-12m). Ранее для этой же цели использовались ангстремы (1 Å = 10-10m).Ионные- понятие, принятое для обозначения размеров шарообразных ионов и вычисления межатомных расстояний в ионных соединениях.  

     Понятие ионный радиус основано на предположении, что размеры ионов не зависят  от состава молекул, в которые они входят.На него влияет количество электронных оболочек и плотность упаковки атомов и ионов в кристаллической решётки. Энергия атомизации простых веществ(это эндоэнергетический эффект превращения одного моля простого вещества в состояние свободных, не взаимодействующих друг с другом атомов (обычно этот эндоэффект определяют для стандартных условий).Энергия атомизации отражает прочность связей между атомами в простом веществе и, в некоторых случаях, прямо сопоставима с энергией этих связей. В частности, энергия атомизации молекулярных азота (478,8 кДж/моль), кислорода (247,8 кДж/моль) и фтора (79,8 кДж/моль) равна половине энергий связей в двухатомных молекулах N2 (957,6 кДж), О2 (495,6 кДж) и F2 (155,4 кДж).

     Поэтому энергия атомизации простого вещества является одним из решающих факторов, определяющих значения энергий активации реакций с участием этого простого вещества, а именно: при прочих равных условиях энергия активации тем меньше (и реакционная способность простого вещества тем выше), чем меньше его энергия атомизации. Энергия активации реакции обычно значительно меньше суммарного эндоэффекта разрушения всех исходных веществ на свободные атомы, но изменяется в одном направлении с этим эндоэффектом.

     Степень окисления (окислительное число, формальный заряд) — вспомогательная условная величина для записи процессов окисления, восстановления и окислительно-восстановительных реакций, численная величина электрического заряда, приписываемого атому в молекуле в предположении, что электронные пары, осуществляющие связь, полностью смещены в сторону более электроотрицательных атомов. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.ПРОЯВЛЕНИЯ ПЕРИОДИЧЕСКОГО ЗАКОНА В ОТНОШЕНИИ ЭНЕРГИИ ИОНИЗАЦИИ 

     Зависимость энергии ионизации атома от порядкового  номера элемента носит отчетливо периодический характер. Легче всего удалить электрон из атомов щелочных металлов, включающих по одному валентному электрону, труднее всего — из атомов благородных газов, обладающих замкнутой электронной оболочкой. Поэтому периодичность изменения энергии ионизации атомов характеризуется минимумами, отвечающими щелочным металлам, и максимумами, приходящимися на благородные газы. Наряду с этими резко выраженными минимумами и максимумами на кривой энергии ионизации атомов наблюдаются слабо выраженные минимумы и максимумы, которые по-прежнему нетрудно объяснить с учетом упомянутых эффектов экранирования и проникновения, эффектов межэлектронных взаимодействий и т. д. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Информация о работе Периодический закон Д.И.Менделеева и его значение в науке