Введение в коллоидную химию

Автор: Пользователь скрыл имя, 07 Декабря 2014 в 16:01, лекция

Краткое описание

Предметом изучения коллоидной химии являются гетерогенные смеси веществ (дисперсные системы), их свойства, процессы, протекающие в этих системах.
Задачи коллоидной химии – прогнозирование направления и изучение осо-бенностей протекания физико-химических процессов в дисперсных системах.
Коллоидная химия использует особые методы исследования, как электронная микроскопия, ультрамикроскопия, ультрацентрифугирование, электрофорез, нефелометрия и др.
Для более отчётливого представления роли коллоидной химии кратко остановимся на истории развития этой науки.

Оглавление

Предмет и задачи коллоидной химии. Представление о коллоидном состоянии вещества. Этапы развития коллоидной химии. Классификация дисперсных систем.

Файлы: 1 файл

лекции по коллоидам.doc

— 4.88 Мб (Скачать)

     Явление светорассеяния используется для количественных оптических методов исследования, в частности для определения объема и размера частиц при известной концентрации или концентрации вещества. Для этих целей применяют специальные приборы: нефелометры, тиндалиметры, ультрамикроскопы.

      Нефелометрия:оптический метод анализа, который заключается в измерении интенсивности света, рассеянного дисперсной системой. На практике при относительных измерениях сравнивают опалесценцию исследуемого раствора с опалесценцией стандартного раствора, размер частиц которого известен. При одинаковой объемной концентрации дисперсной фазы в обоих растворах интенсивности светорассеяний будут пропорциональны объемам или кубов диаметров частиц: . Для проведения измерений применяют визуальные нефелометры, калориметры. Нефелометр (рис.2) состоит из 2-х одинаковых цилиндрических кювет, налитых исследуемым и стандартным растворами, источника света, регистрирующего прибора (окуляра). Освещенность растворов (высоту освещенного столба жидкости) можно регулировать поднятием или опусканием специальных экранов. Свет, попадая на жидкости, рассеивается.

Рис.2. Схема нефелометра:1- кюветы(пробирки) с растворами; 2 –источник освещения; 3 – окуляр; 4 – подвижные экраны; 5 – оптическая часть прибора.

При работе с нефелометром добиваются одинаковой освещенности полукругов окуляра. Так как интенсивность света, рассеянного каждой кюветой пропорциональна высоте её освещенной части, справедливо соотношение: . Отсюда, .

Нефелометрия используется для установления формы и размера частиц, степени их дисперсности, молекулярной массы ВМС (белков, нуклеиновых кислот и др.), строения и конфигурации макромолекул.


             Ультрамикроскопия (разработана в 1903 году Зигмонди и Зидентопф). Принцип метода состоит в том, что используя обычный оптический микроскоп, изменяют способ освещения объекта. Вместо проходящего света применяют боковое освещение мощным пучком света. При таких условиях частицы ДФ кажутся светящимися точками на темном фоне. Их видны, даже, если размер частиц меньше разрешающей способности микроскопа, т.к. каждая частица

Рис.3. Схема ультрамикроскопа:1- кювета с исследуемым золем

Рис.4. Схема ультрамикроскопа: 1 – источник света; 2 – коллоидный раствор; 3 – тубус микроскопа.


 испускает рассеянный свет. Ультрамикроскопией можно подсчитать число частиц диаметром более 2-3 нм. Для этого в окуляре микроскопа имеется сетка, разделенная на квадраты. Подсчет частиц ведут поочередно в одном из центральных квадратов, где наблюдается наиболее интенсивное освещение. Форму частиц устанавливают по характеру их свечения. Если рассеянный свет испускается ровно, без мигания, то частицы – сферические. Частицы пластинчатой или палочкообразной формы под действием броуновского движения меняют свое положение. Поэтому в таких системах наблюдается мерцание (исчезновение и появление свечения). С помощью ультрамикроскопии можно вычислить число частиц в пробе и их размер, условно приняв для частиц сферическую или кубическую форму. Для этого необходимо знать общую массу частиц в пробе и их плотность. Предварительно рассчитав весовую и частичную концентрации или зная объем золя и подсчитав число частиц в нем, можно вычислить размер частиц: .

       В настоящее  время применяются и электронные  микроскопы ( в них вместо световых лучей используется пучок электронов). У них разрешающая способность может достичь 0,15 – 0,2 нм, тогда как для светового микроскопа – 225 нм. Электронный микроскоп позволяет увидеть отдельные коллоидные частицы, крупные макромолекулы белков и вирусов, их структуру. Однако, электронный микроскоп не позволяет наблюдать систему в динамических условиях, т.к. объект рассматривается в виде реплик  (отпечатков).

    

 

 

Лекция № 3

Электрокинетические явления

    К электрокинетическим явлениям относят процессы, связанные с относитель-ным движением фаз под действием электрического поля и возникновением разности потенциалов при смещении фаз. Они обусловлены взаимосвязью между электрическими и кинетическими свойствами дисперсных систем, т.е. наличием двойного электрического слоя на границе твердой и жидкой фаз.

     Электрокинетические  явления, которые возникают под  действием внешнего электрического  поля называют прямыми или  явлениями I  рода. К ним относят электрофорез и электроосмос. Эти явления были открыты в 1808 г. Ф.Ф.Рейсом.

Он погрузил две стеклянные трубки во влажную глину, поместил в них электроды и заполнил водой. При пропускании электри-ческого тока обнаружил движение частиц глины к положительному электроду. Это явление было названо электрофорезом. При пропускании электрического тока наблю-далось поднятие уровня воды в одном, и снижение в другом колене. После выключе-ния тока уровни выровнялись. Это явление перемещения дисперсионной среды относи-тельно неподвижной дисперсной фазы в постоянном электрическом поле было названо электроосмосом.


      Позже было обнаружено  возникновение разности потенциалов  при пропуска-нии через пористую  диафрагму жидкости под давлением. Это явление Квинке  назвал  потенциалом протекания.

      Дорн обнаружил, что при оседании частиц под  действием силы тяжести возникает  разность потенциалов между уровнями  разной высоты в сосуде. Это  явление было названо потенциалом  седиментации (или оседания).

    Потенциалы протекания  и оседания относят к явлениям


II рода или обратным явлениям. Потенциал протекания обратен электрофорезу, а потенциал седиментации – электроосмосу.

     Электрофорез. Из всех электрокинетических явлений широкое применение нашло электрофорез. При электрофорезе происходит направленное перемещение частиц дисперсной фазы и противоионов диффузного слоя к противоположным электродам вследствие разрыва двойного электрического слоя. Скорость движения частиц (гранулы) зависит от величины дзета-потенциала. Эту зависимость выра-жают через уравнение Гельмгольца-Смолуховского: ,

где h - вязкость среды; e0= 8,85.10-12 ф/м – абсолютная диэлектрическая прони-цаемость вакуума; e  - относительная диэлектрическая проницаемость среды (для воды – 81); u - линейная скорость движения частиц, м2/с; Е – напряженность поля (градиент потенциалов), В.

 

Однако линейная скорость зависит от напряженности поля и поэтому для характеристики частиц вво-дится понятие «электрофорети-ческая подвижность». Она равна скорости движения частиц при градиенте потенциалов, равном одной единице (Е = 1 В): , м2/В.с.


     

Где l – расстояние между электродами, м; s – перемещение границы золя, м; V – прилагаемое напряжение, в; t - время, с.

      Тогда дзета-потенциал  определяется по формуле: . Для коллоидных систем, в среднем, он составляет 1,5 – 75 мВ.

     Электрофорез  является одним из методов  изучения фракционного состава  при-родных белков, характеристики биологических объектов (экзим, вирусов, формен-ных элементов крови и др.), диагностики патологий биологических жидкостей. С помощью электрофореза можно выделять из суспензий дисперсную фазу, покры-вать твердые частицы другими веществами. В фармакопеи  предусмотрено уста-новление степени чистоты по электрофоретической однородности некоторых антибиотиков, витаминов. Электрофорез на бумаге, агаровом или крахмальном геле применяется как аналитический и препаративный метод разделения и выделе-ния лекарственных веществ и биологически активных соединений.  В медицине электрофорез используется как метод лечения (ионофорез – метод введения лечебных препаратов в организм человека).

     Электроосмос.  При электроосмосе наблюдается направленное движение жид-кости через неподвижную пористую диафрагму под действием электрического поля.

Материалом мембраны может быть силикагель, глинозем, стеклянные капил-ляры, толченое стекло, кварцевый песок, нерастворимые порошки. Для наблюде-ния электроосмоса U-образный прибор заполняют водой и пропускают электри-ческий ток.


Под действием электрического тока уровни жидкости в коленах прибора меняются. Направление переноса жидкости указывает на знак z-потен-циала. По скорости переноса жидкости можно определить величину дзета-потен-циала: , где c - удельная электропроводность среды, I – сила тока, А; u - объемная скорость течения жидкости. Соотношение u/ I характеризует природу мембраны. Оно выражает объем жидкости, перенесенный в единицу времени на единицу количества электричества.

 

При пропускании электрического тока противоионы диффузного слоя перемещаются к противопо-ложно заряженным электродам. Так как ионы всегда сольватиро-ваны (гидратированы), то при движении иона с ним увлекается определенный объем дисперсион-ной среды. Чем больше толщина


диффузного слоя и меньше площадь поперечного сечения капилляра (поры мембраны), тем сильнее проявляется электроосмотический перенос жидкости.

      Электроосмос  применяется для обезвоживания и сушки пористых материалов, концентрирования коллоидных систем.  Для этой цели используют электрофильтр-прессы. Они представляют собой две горизонтально расположенные пластины, между которыми помещают вещество, подлежащее обезвоживанию. Удаление

воды достигается наложением электрического тока между пластинами: при этом нижняя перфорированная пластина заряжается про-тивоположно заряду жидкой фазы, а верхняя – со знаком заряда водной фазы. Вследствие этого жидкость устремляется к нижнему электроду и удаляется через отверстия.


Лекция № 4

Методы получения коллоидных систем

Основные условия образования лиофобных коллоидных систем

    Как известно, золи по  размеру частиц ДФ занимают  промежуточное положение между  истинными растворами и суспензиями. Поэтому они могут быть получены либо соединением (укрупнением) отдельных молекул в агрегаты, либо дисперги-рованием веществ.

      В соответствии  с этим, Сведберг делит методы  получения на диспергационные (диспергирование) и конденсационные (конденсирование).

      Основными условиями  получения коллоидных систем  являются:

- размеры частиц вещества должны быть доведены до размеров коллоидных частиц (т.е. до 10-4 -10-9 м);

- нерастворимость или малая растворимость дисперсной фазы в дисперсионной среде;

- наличие веществ, способных стабилизировать коллоидные частицы и замедлять их рост. Эти вещества могут быть введены в систему или образовываться в результате взаимодействия ДФ и дисперсионной среды.

Диспергационные методы получения коллоидных систем

    Диспергированием называют  измельчение твердых или жидких  тел в инертной среде, при котором  резко повышается дисперсность и образуется дисперсная сис-тема, обладающая значительной удельной межфазной поверхностью. Диспергиро-вание – не самопроизвольный процесс. Оно требует затраты энергии на преодо-ление межмолекулярных сил при дроблении вещества. Диспергирование делится на физические и химические виды.

     Различают 3 способа  физического диспергирования.

     Размалывание в коллоидных мельницах. При простом механическом дробле-нии или растирании образуются порошки с сравнительно большими размерами зёрен (т.е. грубодисперсные системы). Для получения коллоидных систем диспергирование проводят в коллоидных мельницах (первая коллоидная мельница сконструирована Плауссоном в 1920 г.).

     Лабораторные коллоидные (шаровые) мельницы (рис.1 А) представляют собой вращающий барабан, заполненный шарами из материалов с определенной твердостью (из стали, чугуна или фарфора). При враще-нии барабана шары перекатываются и своими много-кратными ударами, раскалыванием и растиранием измельчают вещество на все более мелкие частицы. Принцип действия промышленных коллоидных мель-ниц (рис.1 Б) основан на развитии достаточно больших разрывающих (истирающих) усилий в веществе под действием центробежной силы в узком зазоре между вращающим ротором и неподвижным статором. Дроб-ление осуществляют в присутствии жидкой диспер-сионной среды и стабилизатора.

      Рис.1. Схемы  шаровой и   

                 коллоидной мельниц


      Коллоидные мельницы применяются для диспергирования минеральных красок, смазочных материалов (графит), пищевых веществ, фармацевтических препаратов (сера), сорбентов для хроматографии.

     Дробление ультразвуком. Под действием звука большой частоты (15000-20000 Гц/с) происходит попеременное (быстро чередующееся) расширение и сжа-тие вещества, приводящее к разрушению частиц. Этот метод применим для веществ, у которых сравнительно небольшое взаимодействие между молекулами, например, для диспергирования жидкостей. Этим методом получают органозоли, коллоидные растворы серы, графит, гипс, крахмал, желатин, каучук и др. По этому способу получаются эмульсии, используемые при парэнтеральном питании больных (ожогами пищевода, раком желудка).

     Распыление электрической дугой. Для полу-чения золей металлов (серебра, золота, платины) электроды из соответствующего металла поме-щают в растворитель и пропускают ток большой силы. При этом в электрической дуге металл испаряется и его атомы, попав в окружающий чужеродный холодный растворитель, вытесняют-ся из  окружения растворителя, конденсируются (объединяются) в более крупные частицы. Этот метод можно рассматривать и как конденсационный метод.

Рис.2. Схема прибора для получения золей металлов электрическим способом

Информация о работе Введение в коллоидную химию