Автор: Пользователь скрыл имя, 12 Сентября 2013 в 23:48, контрольная работа
Потребность управления техническими и экономическими объектами привела к созданию специальных методов, обеспечивающих принятие правильных решений. Один из таких методов это задача линейного программирования. Существуют следующие разделы линейного программирования
построение экономико-математических моделей задач линейного программирования;
теоретические основы методов линейного программирования;
графический метод линейного программирования;
симплексный метод решение задач линейного программирования;
двойственные задачи;
задачи транспортного вида;
Введение
Модели оптимального отраслевого и регионального регулирования
Экономико-математическая модель перспектив развития и размещения предприятий отрасли
Транспортно-производственная модель с целочисленными и непрерывными переменными
З.а. Пример1
З.б. Пример2
З.в. Пример3
Заключение
Литература
Но если сахарная свекла залеживается на складах завода и теряет сахаристость, то эффект будет обратным. Этим и можно объяснить, что выход сахара из переработанного сырья первого сельхозпредприятия на первом сахарном заводе - 11,2, а на втором заводе - 12%. Такая же закономерность и по перерабатываемому сырью второго и третьего сельхозпредприятий.
Сахарные заводы, как правило, не калькулируют себестоимость сахара в разрезе поставщиков сырья, но учет указанных факторов в рассматриваемой задаче может оказать существенное влияние на размещение и специализацию производства продукции двух отраслей - сельскохозяйственного производства и сахарной промышленности и в конечном счете может стать хорошим стимулом для сельскохозяйственных предприятий по развертыванию селекционной работы и освоению новейших технологий выращивания сахарной свеклы.
По данным таблиц 7 построим расширенную модель экономикоматематической задачи и запишем систему ограничений в развернутом виде.
Как видно, матрица задачи содержит 15 ограничений и 17 переменных величин. Она приведена к виду общей задачи ЛП и ее можно решать точным симплексным методом. Результат решения и анализ полученных результатов будут даны ниже. Сейчас запишем условие задачи в развернутом вид.
C=23.13*X1+18.4*X2+26.1*X3+
+(4.85+32.1)*Y11+(5.6+2.4)*Y21
+(5.3+29.9)*Y12+(4.9+22.4)*Y22
+7.82*Z111+8.1*Z211+8.3*Z112+
+8.9*Z212+8.4*Z121+9.1*Z221+9.
Xi, Yij, Zipk ≥0
Таблица 7 - Расширенная модель производственно - транспортной задачи с непрерывными переменными.
Переменные
Ограничения |
Предприятия поставщики сырья, т |
Мощности заводов, перерабатывающих сырье. Способы их транспортных связей с поставщиками. | |||||||||||||
1 |
2 |
3 |
Завод 1 |
Завод 2 | |||||||||||
X1 |
X2 |
X3 |
Y11 |
Y21 |
Y31 |
Y12 |
Y22 |
Y32 | |||||||
1)максимальный объем |
1 |
||||||||||||||
2)максимальный объем |
1 |
||||||||||||||
3)максимальный объем |
1 |
||||||||||||||
4)сохряняя мощность 2-ого завода |
1 |
1 |
1 |
||||||||||||
5)распределение сырья 1-ого |
1 |
-1 |
-1 |
||||||||||||
6) распределение сырья 2-ого |
1 |
-1 |
-1 |
||||||||||||
7) распределение сырья 3-его |
1 |
-1 |
-1 | ||||||||||||
8)производство и |
0,112 |
0,117 |
0,102 |
||||||||||||
9) производство и распределение патоки 1-ого завода, т |
0,051 |
0,056 |
0,047 |
||||||||||||
10) производство и распределение сахарного песка 2-ого завода, т |
0,12 |
0,19 |
0,11 | ||||||||||||
11) производство и распределение патоки 2-ого завода, т |
|||||||||||||||
12)потребность в сахарном |
0,055 |
0,06 |
0,05 | ||||||||||||
13) потребность в патоке 1 потребителя, т |
|||||||||||||||
14) потребность в сахарном песке 2 потребителя, т |
|||||||||||||||
15) потребность в патоке 2 потребителя, т |
|||||||||||||||
Затраты по производству и транспортировке сырья и готовой продукции |
23,13 |
18,4 |
26,1 |
36,95 |
29,7 |
37,5 |
35,2 |
27,3 |
36,2 | ||||||
Переменные
Ограничения |
Потребности потребителей в продукции заводов и способы их транспортных связей |
Объем и тип ограничений | |||||||||||||
Потребитель 1 |
Потребитель 2 | ||||||||||||||
Виды продукции |
Виды продукции | ||||||||||||||
Сахарный песок, т |
Патока, т |
Сахарный песок, т |
Патока, т | ||||||||||||
Z111 |
Z211 |
Z112 |
Z212 |
Z121 |
Z221 |
Z122 |
Z222 | ||||||||
1)максимальный объем |
≤3000 | ||||||||||||||
2)максимальный объем |
≤2100 | ||||||||||||||
3)максимальный объем |
≤4180 | ||||||||||||||
4)сохряняя мощность 2-ого завода |
≥6200 | ||||||||||||||
5)распределение сырья 1-ого |
≥0 | ||||||||||||||
6) распределение сырья 2-ого |
≥0 | ||||||||||||||
7) распределение сырья 3-его |
≥0 | ||||||||||||||
8)производство и |
-1 |
-1 |
≥0 | ||||||||||||
9) производство и распределение патоки 1-ого завода, т |
-1 |
-1 |
≥0 | ||||||||||||
10) производство и распределение сахарного песка 2-ого завода, т |
-1 |
-1 |
≥0 | ||||||||||||
11) производство и распределение патоки 2-ого завода, т |
-1 |
-1 |
≥0 | ||||||||||||
12)потребность в сахарном |
1 |
1 |
=649 | ||||||||||||
13) потребность в патоке 1 потребителя, т |
1 |
1 |
=279 | ||||||||||||
14) потребность в сахарном песке 2 потребителя, т |
1 |
1 |
=519 | ||||||||||||
15) потребность в патоке 2 потребителя, т |
1 |
1 |
=200 | ||||||||||||
Затраты по производству и транспортировке сырья и готовой продукции |
7.82 |
8.1 |
8.3 |
8.9 |
8.4 |
9.1 |
9.3 |
10 |
=>min |
Рисунок 1 – Решении задачи 2
X1=3000, X2=2100, X3=4172.6
Y11=2027.5, Y31=4172.6, Y12=972.5, Y22=2100
Z111=133.7, Z211=515,3
Z112=99.5, Z212=179.5
Z121=519, Z122=200
Остальные переменные
Y21=Y32=Z222=Z221=0
C(X*,Y*,Z*)=553745
Представим эти результаты в виде таблицы
Таблица - 8 Прогнозируемый объём производства и распределения сырья (сахарной свёклы)
Сельхоз - предприятия |
Объём производства сырья, т |
Объём поставки сырья предприятиями заводам, т | |
первому |
второму | ||
1 |
3000 |
2027,5 |
972,5 |
2 |
2100 |
- |
2100 |
3 |
4172,6 |
4172,6 |
- |
итого |
9272,6 |
6200,1 |
3072,5 |
Таблица 9 - Прогнозируемый объём производства и распределение продукции (песка сахарного и патоки)
Заводы |
Производимая продукция |
Объем производства продукции, т |
Величина поставки продукции потребителям, т | |
первому |
второму | |||
1 |
Сахарный песок |
652,5 |
133,7 |
519 |
Патока |
299,5 |
99,5 |
200 | |
2 |
Сахарный песок |
515,5 |
515,3 |
- |
Патока |
179,5 |
179,5 |
- | |
итого |
Сахарный песок |
1168 |
649 |
519 |
Патока |
479 |
279 |
200 |
Как видно, с целью сокращения транспортных расходов первое сельхозпредприятие целесообразно прикрепить к обоим заводам. Второе - ко второму, а третье - к первому заводу. Что касается готовой продукции, то первый потребитель должен ее получать от первого и второго заводов, а второй - только от первого.
Рисунок 2 – Решение двойственной задачи 2
Наиболее перспективным
Двойственная оценка 9-го ограничения – 1213,4 и 11-го 1212,8. На такую величину можно снизить совокупные затраты соответственно на первом и втором заводах при увеличении на 1% выхода патоки из перерабатываемого сырья. Как видно, на втором заводе оценка этого продукта на 0,6 ден. ед. ниже, чем на первом. Объясняется это меньшим дефицитом патоки на данном заводе в связи с несколько большим ее выходом из 1 т переработанного сырья. Заметим, что на втором заводе сырье не залеживается и не теряет свои первоначальные свойства. Здесь оно более оперативно перерабатывается.
Двойственные оценки 8-го и 10-го ограничений соответственно составляют 0,3 и 0 т. Повышение сахаристости свеклы в данных условиях даст или очень малый или нулевой эффект. Однако этот эффект будет резко возрастать при повышении коэффициента выхода патоки из перерабатываемого сырья или уменьшении потребности в патоке.
3.в. Пример 3: Необходимо произвести прогноз производства
бетонных плит и определить объём их перевозок для строительства 8 - этажных домов, с учётом минимизации общей суммы производственных и транспортных расходов. Возьмем два предприятия железно- бетонный завод и Мост - строй по каждому из которых разработана два альтернативных варианта их развития производства, и три потребителя «Добродом», «Панорама», «Ревьера». Определить объёмы производства по вариантам, потребность в продукции потребителей, а также удельные производственные и транспортные расходы.
Таблица 10 - Исходные данные для однопродуктовой производственнотранспортной задачи в дискретной постановке
Предприятия |
Варианты их развития |
Объем производства продукции |
Удельные производственные затраты, ден.ед. |
Потребители | ||
1 |
2 |
3 | ||||
Потребность в продукции, ед | ||||||
3700 |
1400 |
2500 | ||||
Удельные транспортные расходы, ден.ед. | ||||||
Завод железо-бетонных изделий |
1 |
2200() |
250 |
40 |
30 |
27 |
2 |
2400() |
280 |
40 |
30 |
27 | |
Мост-строй |
1 |
1500() |
190 |
25 |
35 |
31 |
2 |
2000() |
210 |
35 |
31 |
0 или 1
Для целочисленных моделей включая и производственно-транспортную задачу в дискретной постановке пока не создано точных метода их решения. В этой связи зачастую пользуются приближенными методами, которые не гарантируют получение оптимального решения. Но в любом случае оно всегда является близким к оптимальному.
Для решения подобных задач можно использовать два подхода.
Первый подход заключается в
том, что производственно-
что противоречит нашему условию. На втором шаге нецелочисленное решение доводится до целочисленного методом, основывающимся на идеях дельта-метода А. Г. Аганбегяна. Этот метод особенно эффективен, когда количество переменных в задаче значительно превосходит количество ограничений.
При втором подходе для решения задачи с самого начала используется приближенный метод. Он эффективен в том случае, когда размерность задач невелика, а заполняемость матрицы значащими коэффициентами не очень плотная.
Воспользуемся первым подходом, построим первую симплексную таблицу №12.
Таблица 12 - Расширенная модель однопродуктовой производственно - транспортной задачи в дискретной постановке
Переменные
Ограничения |
Предприятие и варианты их развития |
Варианты прикрепления предприятий | |||||||||||||||
Варианты развития первого предприятия |
Варианты развития второго предприятия |
Первое предприятие | |||||||||||||||
Возможные прикрепления по: | |||||||||||||||||
1 |
2 |
1 |
2 |
1 варианту развития |
2 вариату развития | ||||||||||||
X11 |
X12 |
X21 |
X22 |
X111 |
X121 |
X131 |
X112 |
X122 |
X132 | ||||||||
1)согласование объемов |
2200 |
-1 |
-1 |
-1 |
|||||||||||||
2) согласование объемов |
2400 |
-1 |
-1 |
-1 | |||||||||||||
3)согласование объемов |
1500 |
||||||||||||||||
4)согласование объемов |
2000 |
||||||||||||||||
5)удовлетворение потребностей потребителей в продукции |
1 |
1 |
|||||||||||||||
6)удовлетворение потребностей потребителей в продукции |
1 |
1 |
|||||||||||||||
7)удовлетворение потребностей потребителей в продукции |
1 |
1 | |||||||||||||||
8) ограничение целочисленности вариантов развития первого предприятия |
1 |
1 |
|||||||||||||||
9)ограничение целочисленности вариантов развития первого предприятия |
1 |
1 |
|||||||||||||||
Затраты по производству и транспортировке продукции ден.ед. |
550000 |
672000 |
285000 |
420000 |
40 |
30 |
27 |
40 |
30 |
27 | |||||||
Переменные
Ограничения |
Варианты прикрепления предприятий |
Объемы и типы ограничений | |||||||||||||||
Второе предприятие | |||||||||||||||||
Возможные прикрепления по: | |||||||||||||||||
1 варианту развития |
2 вариату развития | ||||||||||||||||
X211 |
X221 |
X231 |
X212 |
X222 |
X232 | ||||||||||||
1)согласование объемов |
≥0 | ||||||||||||||||
2) согласование объемов |
≥0 | ||||||||||||||||
3)согласование объемов |
-1 |
-1 |
-1 |
≥0 | |||||||||||||
4)согласование объемов |
-1 |
-1 |
-1 |
≥0 | |||||||||||||
5)удовлетворение потребностей потребителей в продукции |
1 |
1 |
≥3700 | ||||||||||||||
6)удовлетворение потребностей потребителей в продукции |
1 |
1 |
≥1400 | ||||||||||||||
7)удовлетворение потребностей потребителей в продукции |
1 |
1 |
≥2500 | ||||||||||||||
8) ограничение целочисленности вариантов развития первого предприятия |
=1 | ||||||||||||||||
9)ограничение целочисленности вариантов развития первого предприятия |
=1 | ||||||||||||||||
Затраты по производству и транспортировке продукции ден.ед. |
25 |
35 |
31 |
25 |
35 |
31 |
|
Информация о работе Транспортно-производственная модель с целочисленными и непрерывными переменными