Миграция радионуклеидов в почвах

Автор: Пользователь скрыл имя, 27 Ноября 2011 в 09:36, дипломная работа

Краткое описание

Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.

Оглавление

Введение
1. Литературный обзор
1.1 Свойства радионуклида стронций-90
1.2 Накопление радионуклида стронция – 90 в почвах и растениях
1.3 Особенности миграции стронция-90 в окружающую среду
2. Характеристика Семипалатинского ядерного полигона, находящегося на территории Павлодарской области
3. Объект и методы исследования
4. Результаты исследования
4.1 Радиационные последствия атмосферных ядерных испытаний на территории Семипалатинского ядерного полигона, находящегося на землях Павлодарской области
4.2 Характеристика атмосферных ядерных взрывов, произведенных на испытательной площадке «Опытное поле»
Заключение
Список использованной литературы

Файлы: 1 файл

Дипломная.doc

— 1.46 Мб (Скачать)

     В соответствии с НРБ-99 допустимая концентрация 90Sr в воздухе рабочих помещений примерно в 24 раза ниже, чем 89Sr, что указывает на его исключительную радиационную опасность. Для населения допустимая концентрация 90Sr в атмосферном воздухе регламентируется (НРБ-99) величиной, равной 2,7 Бк/м3, что находится за пределами чувствительности большинства методов выделения и измерения радиоактивности этого радионуклида.

 

     Таблица 6- ПГП, e , ДОА  в воздухе рабочих помещений  в зависимости от химических соединений и ядерно-физических свойств радионуклидов  89Sr и 90Sr, МЗУА и МЗА этих изотопов на рабочем месте

Радионуклид Т1/2 Тип химического  соединения , Зв/Бк , Бк/г. , Бк/м3 МЗУА, Бк/г МЗА, Бк
89Sr 50,5 сут. SrTiO3 7,5 · 10–9 2,7 · 106 1,1 · 103 103 106
Иные  соединения 1,0 · 10–9 2,0 · 107 8,0 · 103
90Sr 29,1 лет SrTiO3 1,5 · 10–7 1,5 · 105 53 102 104
Иные  соединения 2,4 · 10–8 8,3 · 105 3,3 · 102
 
 

     Таблица 7- ДОА в  воздухе, e , ПГП с воздухом, водой  и пищей радионуклидов 89Sr и 90Sr и УВ при его поступлении с водой для населения

Радионуклид Т1/2 , Зв/Бк , Бк/г. , Бк/м3 , Зв/Бк , Бк/г. , Бк/кг
89Sr 50,5 сут. 7,3 • 10–9 1,4 • 105 19 1,8 • 10–8 5,8 • 104 53
90Sr 29,1 лет 5,0 • 10–8 2,0 • 104 2,7 8,0 • 10–8 1,3 • 104 5,0

     Исследованиями  установлено, что 80-90% радионуклидов  сосредоточено в активной зоне расположения основной массы корней сельскохозяйственных культур. На необрабатываемых после чернобыльской катастрофы землях практически все радионуклиды находятся в верхней части (до 10-15 см) гумусовых горизонтов, а на пахотных почвах радионуклиды распределены сравнительно равномерно по всей глубине обрабатываемого слоя. Расчеты показывают, что в ближайшей перспективе самоочищение корнеобитаемого слоя загрязненных почв за счет вертикальной миграции радионуклидов будет незначительным [30 , 21].

     Вместе  с тем наблюдаются процессы локального вторичного загрязнения почв сельскохозяйственных угодий за счет горизонтальной миграции радионуклидов вследствие ветровой и водной эрозии. Содержание цезия-137 в пахотном горизонте различных элементов рельефа склоновых земель в результате водной эрозии на посевах однолетних культур за девять лет перераспределилось до 1,5-3,0 раз.

     Увеличение  плотности загрязнения почв цезием-137 в зоне аккумуляции (нижние части  склонов и понижения) по сравнению  с зоной смыва составило в  среднем от 13% при ежегодном смыве почвы менее 5 т/га до 75% - при смыве 12-20 т/га. На бессменных посевах многолетних трав твердого стока не наблюдалось и достоверных различий в плотности загрязнения почв по элементам склонов не установлено. В результате ветровой эрозии осушенных торфяно-болотных и песчаных почв, используемых под посев однолетних культур, локальные различия в плотности загрязнения пахотного горизонта радиоцезием достигали 1,5-2,0 раз. Это подчеркивает необходимость защиты почв от водной и ветровой эрозии, что обеспечивает также снижение потерь гумусового слоя и уменьшает вероятность загрязнения продукции на локальных участках угодий.

     Доступность растениям цезия-137 в почве со временем снижается вследствие его  перехода в необменно-поглощенное  состояние, а подвижность стронция-90 остается высокой и имеет тенденцию к повышению. Основное количество цезия-137 (70-84%) находится в прочносвязанной форме. Для стронция-90, наоборот, характерно преобладание легкодоступных для растений водорастворимой и обменной форм, которые в сумме составляют 53-87% от валового содержания.

     Отмеченные  изменения обусловили разную биологическую  доступность указаниях радионуклидов. Анализ большого массива экспериментальных  данных показал, что коэффициенты перехода (Кп) для цезия-137 в основные сельскохозяйственные культуры по сравнению с 1991 годом снизились в среднем в 1,5 раза и до 4 раз - по сравнению с 1987 г.. Для стронция-90 наблюдается устойчивая тенденция к повышению его перехода из почвы в растения. [31 , 39].

     Установлено, что на кислых, малогумусированных почвах доля подвижных форм радионуклидов выше, чем на высокоплодородных. Поэтому по-прежнему целесообразны агрохимические меры, направленные на повышение плодородия почв, увеличение их емкости поглощения и снижение подвижности радионуклидов в почвенном комплексе.

     Поведение стронция-90 в системе «почва-растение»  имеет ряд отличительных особенностей. Поступление стронция-90 из почв в  растения практически в 10 раз выше, чем цезия-137 при одинаковой плотности  загрязнения земель.

     Содержание радионуклидов в сельскохозяйственной продукции зависит как от плотности загрязнения, так и типа почв, их гранулометрического состава и агрохимических свойств, а также биологических особенностей возделываемых культур.

     Показатели  почвенного плодородия оказывают существенное влияние на накопление радионуклидов всеми сельскохозяйственными культурами, особенно многолетними травами.

     При повышении содержания физической глины  в почве от 5 до 30%, содержания гумуса от 1 до 3,5% переход радионуклидов  в растения снижается в 1,5-2 раза, а по мере повышения содержания в почве подвижных форм калия и фосфора от низкого (менее 100 мг К2О на кг почвы) до оптимального (200-300 мг/кг) и изменения реакции почв от кислого интервала (рН 4,5-5,0) к нейтральному (рН6,5-7,0) - в 2-3 раза. Минимальный переход цезия-137 и стронция-90 в растения наблюдается на почвах с оптимальными параметрами агрохимических свойств [32 , 41].

     Еще большее влияние на накопление радионуклидов  в сельскохозяйственной продукции  оказывает режим увлажнения почв. Установлено, что переход радиоцезия в многолетние травы повышается в 10-27 раз на дерново-глеевых и дерново-подзолисто-глеевых почвах по сравнению с автоморфными и временно-избыточно увлажняемыми разновидностями этих почв. Исследованиями БелНИИ мелиорации и луговодства установлено, что минимальное накопление цезия-137 в многолетних травах обеспечивается при поддержании уровня грунтовых вод на глубине 90-120 см от поверхности осушенных торфяных и торфяно-глеевых почв.

     Установленные в исследованиях закономерности подтверждены практикой. На переувлажненных песчаных и торфяных почвах, например, в Наровлянском и Лельчицком районах Гомельской области, Столинском и Лунинецком районах Брестской области высокая степень загрязнения травяных кормов и молока наблюдается даже при относительно низких плотностях загрязнения цезием-137 (2-5 Ки/кв.км) и стронцием-90 (0,3-1,0 Ки/кв.км). В то же время на окультуренных участках дерново-подзолистых суглинистых почв продукция с допустимым содержанием радионуклидов может быть получена при плотности загрязнения цезием-137 до 20-30 Ки/кв.км [33 ,19 ].

     Очевидно, что плотность загрязнения почв сельскохозяйственных угодий радионуклидами не может однозначно отражать уровень  загрязнения выращиваемой сельскохозяйственной продукции и в настоящее время для разработки эффективных защитных мероприятий необходим учет основных свойств почв каждого поля.

 

      2. Характеристика Семипалатинского  ядерного полигона, находящегося  на территории Павлодарской области 

     Бывший  Семипалатинский испытательный ядерный полигон (СИЯП) расположен в северо-восточной части Казахстана, в степной и полупустынной зоне, с общей площадью 18500 кв. км. Полигон занимает площади Восточно-Казахстанской (54%), Павлодарской (39%) и Карагандинской (7%) областей. Периметр административной границы СИЯП - около 600 км [34 ,88 ].

     Постановлением  Правительства Республики Казахстан  № 172 от 07.02.1996 года земли бывшего  Семипалатинского испытательного ядерного полигона переведены в состав земель запаса: Карагандинской области – 131,7 тыс.га, Павлодарской – 706 тыс.га, Восточно-Казахстанской – 978,9 тыс.га.

     Одной из первых задач в комплексе мер  по организации проведения ядерных  испытаний был выбор места  для испытательного полигона. В Советском  Союзе наиболее значимые военные  полигоны размещались в Казахстане. Лучшего места в геофизическом отношении просто не возможно было найти. Так, в Казахской ССР 40% от общей ее площади составляли пустыни, 23% - полупустыни, 20% - степи, 7% - лесостепи и 10% - горы. Поэтому, естественно, на этот регион было обращено особое внимание.

     Главное требование, которым руководствовались  при выборе места для строительства  испытательного ядерного полигона, заключалось  в том, чтобы район был практически  безлюдный, без сельскохозяйственных угодий и обширный по площади. Кроме того, этот район должен был иметь поблизости хотя бы минимум транспортных артерий, а также возможность обустройства на его территории местной взлетно-посадочной полосы для приема транспортных самолетов, поскольку предстояло кроме перевозки большого количества грузов наладить постоянно действующую оперативную связь. По предварительным расчетам диаметр необходимой для полигона территории должен был составлять не менее 200 км. После долгих поисков, с учетом главного требования, такой район был найден в степях Семипалатинской области Казахстана [35 , 61].

       Место для ядерного полигона  было выбрано в прииртышской  степи, примерно в 140 км западнее  г. Семипалатинска. Этот район  Казахской ССР представлял и  представляет в настоящее время  безводную степь с редкими заброшенными и пересохшими колодцами. Юго-западная часть района является низкогорьем, на котором расположены горные массивы, расчлененные долинами и распадами. В восточной части района находится долина реки Чаган – левый приток реки Иртыш. В этой части расположены пересыхающие летом соленые мелководные озера.

     Климат  района континентальный. Главные его  особенности – это засушливость с малоснежной холодной зимой  и сравнительно коротким и жарким летом. Атмосферных осадков выпадает мало. Часто дуют сильные ветры. Зимой температура воздуха достигает – 400С, летом – превышает +300С. годовое количество осадков колеблется в пределах 200 – 300 мм, большая их часть выпадает летом. Высота снежного покрова 100 – 200 мм обусловливает незначительное количество талых вод и глубокое промерзание почвы (до 1,5 – 2 м). Зимой и осенью преобладают ветра юго-восточного направления со средней скоростью 4 – 5 м/с; для лета характерны ветра северного направления, бывают пыльные бури. В районе возможны частые перемены направления и скорости ветра, причем даже в течение одного дня [36 , 99].

     Главной рекой района является р. Иртыш –  крупнейший приток Оби, одна из важнейших  судоходных рек Казахстана. Вторая по величине река района – левый  приток Иртыша, река Чаган. Однако это река маловодная, ее ширина достигает 10 м на плесах, глубина до 2 м, вода в реке соленая, в наиболее засушливые годы пересыхает в конце лета. Все остальные небольшие реки – маловодны и летом практически полностью пересыхают.

     В экономическом отношении район был развит довольно слабо. Населенные пункты, расположенные главным образом по долинам рек Иртыш и Чаган, были небольшие, сельского типа. Практически пустовавшая степь традиционно использовалась местными жителями, преимущественно казахами-кочевниками, для выпаса скота. По территории района были разбросаны временные летники и зимники. Площадка, которой предстояло стать испытательным комплексом полигона, представляла собой равнину диаметром примерно 20 км, окруженную с трех сторон – южной, западной и северной – невысокими горами. На востоке этой своеобразной долины находились небольшие холмы. Когда-то, в глубине веков, эта равнина была дном моря. К концу 40-х годов рядом с тем местом, которое стало Опытным полем полигона, осталось усыхавшее озеро с очень соленой водой.

     На  этой равнине в 1947 году было начато строительство испытательного ядерного полигона.

     Испытательные площадки для проведения подземных  ядерных взрывов

     Подземные ядерные испытания с 11.10.1961 г. по 19.10.1989 г. проводились в основном на трех рабочих площадках полигона:

  • площадка «Г» («Дегелен»). Ее общая площадь в границах горного массива Дегелен составляла 33100 га. Площадка использовалась для проведения подземных взрывов в штольнях (горизонтальных горных выработках);
  • площадка «Б» («Балапан»), общая площадь которой была равна примерно 100000 га. Эта площадка использовалась для проведения подземных взрывов в скважинах;
  • площадка «С» («Сары-Узень» и «Муржик») - вспомогательная площадка для проведения подземных взрывов в скважинах [37 ,44 ].

Информация о работе Миграция радионуклеидов в почвах