Миграция радионуклеидов в почвах

Автор: Пользователь скрыл имя, 27 Ноября 2011 в 09:36, дипломная работа

Краткое описание

Важнейшая проблема сельского хозяйства в условиях загрязнения почвы радиоактивными элементами – максимально возможное снижение поступления этих веществ в растениеводческую продукцию и предотвращение накопление их в организмах сельскохозяйственных животных. Решение этой задачи связано с комплексом мероприятий, которые необходимо проводить в сельском хозяйстве. Основание для проведения данных мероприятий является увеличение заболеваемости и смертности, врожденных уродств и населения, проживающего на загрязнённых территориях.

Оглавление

Введение
1. Литературный обзор
1.1 Свойства радионуклида стронций-90
1.2 Накопление радионуклида стронция – 90 в почвах и растениях
1.3 Особенности миграции стронция-90 в окружающую среду
2. Характеристика Семипалатинского ядерного полигона, находящегося на территории Павлодарской области
3. Объект и методы исследования
4. Результаты исследования
4.1 Радиационные последствия атмосферных ядерных испытаний на территории Семипалатинского ядерного полигона, находящегося на землях Павлодарской области
4.2 Характеристика атмосферных ядерных взрывов, произведенных на испытательной площадке «Опытное поле»
Заключение
Список использованной литературы

Файлы: 1 файл

Дипломная.doc

— 1.46 Мб (Скачать)

     По  результатам экспериментального определения  количества расплавленной породы, измерения  размеров полости и установления способности горной породы к газообразованию стало возможным оценить величину избыточного давления в полости подземного взрыва к моменту окончания ее формирования. 

     Таблица 12 - Интенсивность подземных ядерных  испытаний и мирных ядерных взрывов  на Семипалатинском полигоне в течение 1961-1989 гг.

Годы Количество  испытаний Тротиловый  эквивалент, кт Примечания
1961 1 1  
1962 1 0,001-20  
1963 - -  
      С 01.01.1963 г. по 15.04.1964 г. ядерные испытания не проводились  в связи с подготовкой Договора о запрещении испытаний в трех средах.
1964 7 90 Две нештатные  радиационные ситуации (НРС).
1965 12 250 Включая два  мирных ядерных взрыва (МЯВ) в скважинах 1004 и 1003.
1966 14 420 Одна НРС.
1967 15 220 Одна НРС.
1968 14 120 Включая МЯВ  в скважине Т-1 и Т-2. Одна НРС.
1969 14 270  
1970 12 150  
1971 15 300 Включая МЯВ  в штольне 148/1. Одна НРС.
1972 14 450 Две НРС.
1973 9 310 Одна НРС.
1974 15 150 Включая МЯВ  в скважине Р-1 и в штольне 148/5. Две НРС.
1975 12 210  
1976 16 300 Одна НРС.
1977 15 350  
1978 20 620  
1979 20 960  
1980 18 600 Одна (последняя) НРС.
1981 15 610  
1982 10 470  
1983 14 440  
1984 14 1130  
1985 8 45  
1986 - - С 26.07.1985 г. по 26.02.1987 г. - мораторий на ядерные испытания.
1987 16 1000  
1988 12 670  
1989 7 300  
итого 340 11100  
 

     Оказалось, и это подтвердилось экспериментально, что при взрыве в граните с  содержанием воды 0,5-1% по весу измеренное в полости давление было ниже атмосферного. При «газовости» пород 2-3% давление в полости взрыва становилось  выше атмосферного, что могло быть причиной выхода в атмосферу радиоактивных газов. Фиксируя при подземных взрывах время начала выхода в атмосферу радиоактивных газов и зная другие необходимые параметры, специалисты научились количественно оценивать проницаемость пород, в которых производились подземные ядерные взрывы. В последующем эти знания позволили разработать методику прогноза радиационной обстановки после проведения подземных ядерных испытаний, что в значительной степени способствовало обеспечению радиационной безопасности участников испытаний [52, 33].

     В период проведения подземных ядерных  испытаний на Семипалатинском полигоне ставились не только военные задачи, связанные с усовершенствованием  характеристик ядерных зарядов  и устройств или разработкой  мероприятий по обеспечению безопасности участников испытаний и населения, но и задачи мирного использования ядерных взрывов, такие как создание искусственных водоемов и каналов.

     Обязательным  требованием Московского договора 1963 г. было нераспространение радиоактивных  продуктов подземных ядерных  взрывов за пределы территории страны, которая проводила такие испытания. Следовательно, методика проведения подземных ядерных взрывов должна была разрабатываться как с учетом обеспечения радиационной безопасности персонала полигона и населения, так и с учетом требований Московского договора. Такой подход к проблеме требовал не только изучения закономерностей выхода (прорыва) радиоактивных продуктов взрывов в атмосферу в широком диапазоне условий их проведения, но и возможности эффективного регулирования выхода радиоактивных веществ в атмосферу при выполнении специальных требований, например, использования ядерных зарядов, при взрыве которых за счет реакций деления расщепляющихся материалов выделяется минимальная доля энергии. При этом необходимо было учитывать требования экономичности всех практических рекомендаций, обеспечивающих радиационную безопасность проведения подземных ядерных взрывов при реализации грандиозных проектов, которые разрабатывались в 60-80-е годы (переброс стока сибирских рек в южном направлении, создание искусственных водоемов, каналов, гаваней и т.д.). Кроме того, рассматривалась возможность использования подземных ядерных взрывов для решения широкого круга таких народнохозяйственных задач, как устройство котлованов при строительстве, стимуляция добычи нефти и газа, тушение факелов горящих газов и фонтанов нефти, сейсмическое зондирование земной коры в интересах поиска полезных ископаемых, создание подземных резервуаров и др [53 , 44].

     Такой широкий круг задач требовал внимательного  изучения радиационной обстановки после проведения подземных ядерных взрывов, поскольку предполагалось, что в районах взрывов будут проводиться различного рода работы, а сами взрывы будут проводиться вблизи населенных пунктов.

     За  время деятельности Семипалатинского полигона на его территории было осуществлено 7 подземных ядерных взрывов в промышленных целях. Проведены они были (по порядку) в скважинах 1004 и 1003, Т-1, Т-2, в штольне 148/1, в скважине Р-1 («Лазурит») и в штольне 148/5. Следует отметить, что радиоактивные следы после всех ядерных взрывов, за исключением первого мирного ядерного взрыва «Чаган» в скважине 1004, сформировались полностью в границах территории полигона, не представляя какой-либо опасности для населения, и в настоящее время остаточное радиоактивное загрязнение на этих следах отсутствует [54 , 5].

     После взрыва «Чаган» в скважине 1004, который  был произведен специально для образования  искусственного водоема, остаточное загрязнение  можно обнаружить и в настоящее  время. Именно этот эксперимент показал, что вред, наносимый промышленными ядерными технологиями, в основе которых лежат подземные ядерные взрывы, может быть несоизмеримо больше их экономической выгоды. Но «гигантомания народнохозяйственных проектов СССР и отсутствие достаточно достоверных знаний относительно последствий подземных ядерных испытаний большой мощности, сделали возможным проведение эксперимента «Чаган» на полигоне.

     Основные  характеристики взрыва «Чаган» и  особенности радиационной обстановки после взрыва

     Первый  опытно-промышленный эксперимент «Чаганї был проведен в целях получения информации о возможности использования подземных ядерных взрывов для образования глубоких воронок, а также чтобы оценить полезность, а, возможно, и необходимость применения ядерных зарядов для создания водохранилищ в засушливых районах страны. Он был осуществлен 15.01.1965 г. в месте слияния рек Чаган и Ащи-Су в урочище Балапан. Подготовка и проведение взрыва проводились по специальному проекту, содержавшему комплекс мероприятий по радиационной и сейсмической безопасности населения [ 55, 76].

     Проектом, в создании которого принимали участие  специалисты ряда ведущих институтов бывшего СССР, предполагалось образование  воронки и радиоактивного облака взрыва в результате выброса грунта, а также формирование следа радиоактивного загрязнения.

     Для обеспечения безопасности населения  в секторе возможного формирования радиоактивного следа предполагалось создать несколько зон: зона отселения; зона оповещения и вывода людей и  скота из построек на время прохождения  сейсмической волны, а также контролируемая зона (санитарно-защитная зона и зона наблюдения). Из зоны наиболее сильного радиоактивного загрязнения предусматривалось временное отселение людей, чтобы снизить их дозовые нагрузки до величин, допускаемых санитарно-гигиеническими нормами. Внутренней, то есть ближней к эпицентру взрыва, границе зоны наблюдения (ЗН) соответствовало такое расстояние от взрыва, начиная с которого необходимость в проведении каких-либо ограничительных мероприятий для населения отсутствовала.

     Установленные перед взрывом размеры зон уточнялись после его проведения и выполнения комплекса работ по определению реальной радиационной обстановки. Затем, основываясь на закономерностях снижения уровней радиационного воздействия, устанавливались сроки пересмотра и сокращения размеров зон, что давало возможность продолжать ведение обычной хозяйственной деятельности на территории, которая ранее была определена как санитарно-защитная зона.

     В результате механического эффекта  взрыва заложенного на глубине 178 м  ядерного заряда мощностью 140 кт образовалась воронка глубиной 100 м, диаметром по гребню навала грунта 520 м и объемом примерно 6 млн. м3. Выброшенный из воронки грунт образовал земляной вал высотой 20-35 м, который перекрыл русло реки Чаган [56 ,33 ].

     Заполнение воронки водой, согласно проекту, должно было происходить за счет весеннего паводка реки Чаган, для чего предусматривалось строительство канала. После проведения всех строительных работ образовалось два больших водоема: внутренний - в воронке и внешний - за счет заполнения водой поймы рек Чаган и Ащи-Су. Через два года в обоих водохранилищах появилась рыба (сорога, линь, сазан и др.), а воду из них местное население стало использовать для водопоя скота.

     Необходимо  отметить, что оценке радиационной обстановки на искусственно созданном объекте и на близлежащих к нему территориях уделялось большое внимание специалистами многих научных учреждений как при выполнении различного рода научных комплексных программ радиационных исследований (Ю.А. Израэль, С.И. Макерова, В.А. Логачев, В.Н. Петров, Ф.Я. Ровинский, В.Г. Рядов, А.А. Тер-Сааков, С.Л. Турапин и др.), так и различных частных программ радиоэкологических обследований, продолжавшихся в течение многих лет (Ю.В. Дубасов, К.И. Гордеев, В.М. Завьялов, А.Б. Иванов, А.С. Кривохатский, В.М. Лоборев, А.М. Матущенко, Л.Б. Прозоров, Е.Д. Стукин, Г.А. Шевченко, С.Г. Чухин и др.). Изучение радиоэкологического состояния этого объекта и местности вокруг него было продолжено в 90-е годы уже в рамках выполнения международных программ мониторинговых наблюдений (А.А. Искра, Ю.В. Дубасов, В.А. Логачев, А.М. Матущенко, С.Г. Смагулов, А.К. Чернышев и многие другие). В настоящее время мониторинг радиационной обстановки в районе озера Чаган или, как его называют, озера «Атомкуль» ведут специалисты Национального ядерного центра Республики Казахстан, который находится на территории г. Курчатова - бывшего административно-научного центра уже несуществующего Семипалатинского испытательного полигона (Ш.Т. Тухватулин, М.А. Ахметов, Л.Д. Птицкая, В.Р. Бурмистров, О.И. Артемьев и др.) [57, 33].

     Научно-технический  интерес может представлять внешняя  картина развития облака взрыва. Так, примерно через 40 мсек после подрыва  заряда началось фонтанирование воды из скважины и характерное вспучивание  грунта диаметром около 600 м у основания. Начальная скорость подъема купола грунта в эпицентре взрыва составляла 100 м/ сек. Спустя 2,5 сек после взрыва наблюдался прорыв раскаленных газов через слой раздробленной породы с образованием видимых глазом очагов свечения. К этому времени скорость движения породы вверх составляла 160 м/сек, то есть достигла максимума, и затем начала быстро снижаться.

     В конце шестой секунды в верхней  части столба сформировалось быстро расширяющееся конденсационное  облако. Примерно на 10-й секунде столб выброса достиг максимальной высоты, равной 950 м, а диаметр составил 800 м. В результате падения и дробления грунта у основания султана выброса начала образовываться базисная волна, представляющая собой кольцевое облако пыли, которое распространялось в разные стороны с небольшой скоростью. Достигнув размеров в диаметре около 5000 м при высоте подъема пыли 500-750 м, движение фронта базисной волны практически прекратилось. В последующем облако пыли базисной волны смещалось в северо-западном направлении, а центральное пылевое облако сносилось ветром в северо-восточном направлении. В течение последующих 30 минут пыль в районе проведения взрыва в основном рассеялась, на поверхности Земли вокруг образовавшейся воронки стал виден навал грунта высотой до 20-35 м и диаметром 900-1000 м. К этому времени облако взрыва, поднявшись на высоту до 4800 м, разделилось на две части в соответствии с направлением ветра на разных высотах, формируя локальный след радиоактивного загрязнения. Через 15 минут после взрыва максимальные уровни радиации в облаке взрыва составляли 180 Р/ч, а через 3,5 часа - лишь 0,1 Р/ч [58 , 44].

     Как известно, закономерности формирования радиационной обстановки в значительной степени зависят от состояния  погоды и, в первую очередь, от состояния атмосферы. Погода в районе взрыва «Чаган» при его проведении была обусловлена восточной периферией циклона и влиянием с юго-запада теплого воздушного фронта. Слоистая облачность сплошного характера располагалась на высоте 2200 м, а расположенная ниже облачность в 5 баллов имела нижнюю границу на высоте около 800 м. Горизонтальная видимость составляла 8-10 км, наблюдалась слабая дымка, температура воздуха была равна -2,4-С [ 59, 60].

     Формирование  и облака взрыва, и радиоактивного следа происходило при аномальном распределении температуры и ветра по высоте. При этом слой атмосферы от поверхности земли и до максимальной высоты подъема облака, равной 4800 м, имел следующие характеристики:

Информация о работе Миграция радионуклеидов в почвах