Предмет и методы эконометрики

Автор: Пользователь скрыл имя, 12 Октября 2015 в 11:19, контрольная работа

Краткое описание

Эконометрика как наука возникла в первой половине 20-го века в результате активного использования для решения задач экономической теории математических и статистических методов.
Термин эконометрика введен в научную литературу в 1930 году норвежским статистиком Рагнаром Фришем. Он первым определил эконометрику, как научную дисциплину, базирующуюся на синтезе экономической теории, статистики и математики.

Файлы: 1 файл

Ефремова 5. Эконометрика.docx

— 71.68 Кб (Скачать)

- в 1970 г. — Пол Антони Самуэльсон — за учебник “Экономикс” с официальной формулировкой “за вклад . в повышение общего уровня анализа в экономической науке”;

- в 1973 г. — Василий Васильевич  Леонтьев, американский экономист  российского происхождения, — за  разработку метода прогнозного  экономического анализа “затраты  — выпуск”;

- в 1975 г. — Леонид Витальевич  Канторович, советский экономист  и математик, — за введение  в экономическую науку моделей  линейного программирования и разработку подходов к оптимизации использования ресурсов.

Эконометрика представляет собой сочетание трех наук:

1) экономической теории;

2) математической и экономической  статистики;

  1. 3) математики  
    Основные классы эконометрических моделей.

Главным инструментом эконометрического исследования является модель. Выделяют три основных класса эконометрических моделей:

1) модель временных рядов;

2) модели регрессии с одним уравнением;

3) системы одновременных уравнений.

 

1. Моделью временных рядов называется зависимость результативной переменной от переменной времени или переменных, относящихся к другим моментам времени.

К моделям временных рядов, характеризующих зависимость результативной переменной от времени, относятся:

а) модель зависимости результативной переменной от трендовой компоненты или модель тренда;

б) модель зависимости результативной переменной от сезонной компоненты или модель сезонности;

в) модель зависимости результативной переменной от трендовой и сезонной компонент или модель тренда и сезонности.

К моделям временных рядов, характеризующих зависимость результативной переменной от переменных, датированных другими моментами времени, относятся:

а) модели с распределённым лагом, объясняющие вариацию результативной переменной в зависимости от предыдущих значений факторных переменных;

б) модели авторегрессии, объясняющие вариацию результативной переменной в зависимости от предыдущих значений результативных переменных;

в) модели ожидания, объясняющие вариацию результативной переменной в зависимости от будущих значений факторных или результативных переменных.

Кроме рассмотренной классификации, модели временных рядов делятся на модели, построенные по стационарным и нестационарным временным рядам.

Стационарным временным рядом называется временной ряд, который характеризуется постоянными во времени средней, дисперсией и автокорреляцией, т. е. данный временной ряд не содержит трендовой и сезонной компонент.

Нестационарным временным рядом называется временной ряд, который содержит трендовую и сезонную компоненты.

 

2. Моделью регрессии с одним уравнением называется зависимость результативной переменной, обозначаемой как у, от факторных (независимых) переменных, обозначаемых как х1,х2,…,хn. Данную зависимость можно представить в виде функции регрессии или модели регрессии:

y=f(x,β)=f(х1,х2,…,хn, β1…βk)

где β1…βk – параметры модели регрессии.

Можно выделить две основных классификации моделей регрессии::

а) классификация моделей регрессии на парные и множественные регрессии в зависимости от числа факторных переменных;

б) классификация моделей регрессии на линейные и нелинейные регрессии в зависимости от вида функции f(x,β).

В качестве примеров моделей регрессии с одним уравнением можно привести следующие модели:

а) производственная функция вида Q=f(L,K), выражающая зависимость объёма производства определённого товара (Q) от производственных факторов – от затрат капитала (К) и затрат труда (L);

б) функция цены Р=f(Q,Pk), характеризующая зависимость цены определённого товара (Р) от объема поставки (Q) и от цен конкурирующих товаров (Pk);

в) функция спроса Qd=f(P,Pk,I), характеризующая зависимость величины спроса на определённый товар (Р) от цены данного товара (Р), от цен товаров-конкурентов (Pk) и от реальных доходов потребителей (I).

 

3. Системой одновременных уравнений называется модель, которая описывается системами взаимозависимых регрессионных уравнений.

Системы одновременных уравнений могут включать в себя тождества и регрессионные уравнения, в каждое из которых могут входить не только факторные переменные, но и результативные переменные из других уравнений системы.

Регрессионные уравнения, входящие в систему одновременных уравнений, называются поведенческими уравнениями. В поведенческих уравнениях значения параметров являются неизвестными и подлежат оцениванию.

Основное отличие тождеств от регрессионных уравнений заключается в том, что их вид и значения параметров известны заранее.

Примером системы одновременных уравнений является модель спроса и предложения, в которую входит три уравнения:

а) уравнение предложения:  =а0+а1*Рt+a2*Pt-1;

б) уравнение спроса:  =b0+b1* Рt+b2*It;

в) тождество равновесия: QSt = Qdt,

где QSt – предложение товара в момент времени t;

Qdt – спрос на товар в момент времени t;

Рt – цена товара в момент времени t;

Pt-1 – цена товара в предшествующий момент времени (t-1);

It– доход потребителей в момент времени.

В модели спроса и предложения выражаются две результативные переменные:

а) Qt– объём спроса, равный объёму предложения в момент времени t;

б) Pt– цена товара в момент времени t.

 

 

  1. Аддитивная и мультипликативная модели временного ряда

   Компоненты временного ряда, аддитивная и мультипликативная модели.

Временной ряд – это последовательность наблюдений некоторой величины в последовательные моменты времени. Отдельные наблюдения называются уровнями ряда (Yt), где t число уровней. Составляющие временного ряда Yt=Ut+Vt+Ct+Et:

  • Ut – трэнд, плавно меняющаяся компонента, описывает длительное изменение величины;
  • Vt – сезонная компонента, повторяемость экономических процессов в течении не очень долгого периода времени (месяц, год);
  • Ct – циклическая компонента, повторяемость экономических процессов в течении длительного периода времени;
  • Et – случайная компонента, отражающая влияние не поддающихся учету случайных факторов.

 Существует несколько подходов к анализу структуры временных рядов, содержащих сезонные или циклические колебания.

Простейший подход - расчет значений сезонной компоненты методом скользящей средней и построение аддитивной или мультипликативной модели временного ряда.

Аддитивные модели представляют собой обобщение множественной регрессии (которая является частным случаем общей линейной модели). Используют операцию сложения (Y=X1+X2+X3).

Общий вид аддитивной модели следующий:

Y= T + S + E.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент.

Мультипликативные модели используют операцию умножения (Y=X1*X2*X3).

Общий вид мультипликативной модели выглядит так:

Y = T∙S∙E.

Эта модель предполагает, что каждый уровень временного ряда может быть представлен как произведение трендовой, сезонной и случайной компонент.

Выбор одной из двух моделей осуществляется на основе анализа структуры сезонных колебаний. Если амплитуда колебаний приблизительно постоянна, строят аддитивную модель временного ряда, в которой значения сезонной компоненты предполагаются постоянными для различных циклов. Если амплитуда сезонных колебаний возрастает или уменьшается, строят мультипликативную модель временного ряда, которая ставит уровни ряда в зависимость от значений сезонной компоненты.

Построение аддитивной и мультипликативной моделей сводится к расчету значений трендовой, циклической и случайной компонент для каждого уровня ряда.

Процесс построения модели включает в себя следующие шаги.

  1. Выравнивание исходного ряда методом скользящей средней.
  2. Расчет значений сезонной компоненты.
  3. Устранение сезонной компоненты из исходных уровней ряда и получение выровненных данных в аддитивной или мультипликативной модели.
  4. Аналитическое выравнивание уровней и расчет значений тренда с использованием полученного уравнения тренда.
  5. Расчет полученных по модели значений или
  6. Расчет абсолютных и относительных ошибок.

Если полученные значения ошибок не содержат автокорреляции, ими можно заменить исходные уровни ряда и в дальнейшем использовать временной ряд ошибок для анализа взаимосвязи исходного ряда и других временных рядов.

 

  1. Показатели корреляции

Определим показатели корреляции и детерминации:

для линейной зависимости:

Коэффициент корреляции, равный 0,8892, показывает, что выявлена весьма тесная зависимость между инвестициями в основной капитал и валовым региональным продуктом. Коэффициент детерминации, равный 0,790684, устанавливает, что вариация валового регионального продукта на 79,1% из 100% предопределена вариацией инвестиций в основной капитал; роль прочих факторов, влияющих на валовой региональный продукт, определяется в 20,9%, что является сравнительно небольшой величиной.

Тесноту связи оценивают с помощью показателей корреляции и детерминации:

 

 

 

 

    1. Критерий Стьюдента (t-критерий)

Критерий позволяет найти вероятность того, что оба средних значения в выборке относятся к одной и той же совокупности. Данный критерий наиболее часто используется для проверки гипотезы: «Средние двух выборок относятся к одной и той же совокупности».

При использовании критерия можно выделить два случая. В первом случае его применяют для проверки гипотезы о равенстве генеральных средних двух независимых, несвязанных выборок (так называемый двухвыборочный t-критерий. В этом случае есть контрольная группа и экспериментальная (опытная) группа, количество испытуемых в группах может быть различно.

Во втором случае, когда одна и та же группа объектов порождает числовой материал для проверки гипотез о средних, используется так называемый парный t-критерий. Выборки при этом называют зависимыми, связанными.

а) случай независимых выборок

Статистика критерия для случая несвязанных, независимых выборок равна:

                                                                             (1)                   

где   ,    — средние арифметические в экспериментальной и контрольной группах,

 - стандартная ошибка разности средних арифметических. Находится из формулы:   

 ,                              (2)

где n1 и n2 соответственно величины первой и второй выборки.

Если n1=n2, то стандартная ошибка разности средних арифметических будет считаться по формуле:

                                         (3)

где n величина выборки.

Подсчет числа степеней свободы осуществляется по формуле:

k = n1 + n2 – 2.                                                                                     (4)

При численном равенстве выборок k = 2n - 2.

Далее необходимо сравнить полученное значение tэмп с теоретическим значением t—распределения Стьюдента (см. приложение к учебникам статистики). Если tэмп<tкрит, то гипотезаH0 принимается, в противном случае нулевая гипотеза отвергается и принимается альтернативная гипотеза.

Рассмотрим пример использования t-критерия Стьюдента для несвязных и неравных по численности выборок.

Пример 1. В двух группах учащихся — экспериментальной и контрольной — получены следующие результаты по учебному предмету (тестовые баллы; см. табл. 1).

Таблица 1. Результаты эксперимента

Первая группа (экспериментальная) N1=11 человек

Вторая группа (контрольная)

N2=9 человек

12   14   13   16   11   9   13   15  15   18   14

13   9   11   10   7   6   8  10   11


Общее количество членов выборки: n1=11, n2=9.

Расчет средних арифметических: Хср=13,636; Yср=9,444

Стандартное отклонение: sx=2,460; sy=2,186       

По формуле (2) рассчитываем стандартную ошибку разности арифметических средних:

Информация о работе Предмет и методы эконометрики