Материальные носители информации и их развитие

Автор: Пользователь скрыл имя, 11 Марта 2012 в 15:55, курсовая работа

Краткое описание

Цель работы заключается в изучении основных типов материальных носителей информации. Для достижения поставленной цели необходимо решить следующие задачи:
1. Проследить развитие каждого из представленных в работе типа материального носителя информации.
2. Дать характеристику и раскрыть функциональную сущность современных материальных носителей информации.

Оглавление

ВВЕДЕНИЕ 3
1. ИСТОРИЯ РАЗВИТИЯ МАТЕРИАЛЬНЫХ НОСИТЕЛЕЙ ИНФОРМАЦИИ…………………………………………………………………..5
1.1. Древнейшие материалы для письма 5
1.2. Бумага 7
1.3. Фотографические носители………………………………………………...13
1.4. Материальные носители механической звукозаписи…………………….15
2. ФУНКЦИОНАЛЬНАЯ СУЩНОСТЬ СОВРЕМЕННЫХ МАТЕРИАЛЬНЫХ НОСИТЕЛЕЙ ИНФОРМАЦИИ…………………………17
2.1. Магнитные носители информации 18
2.2. Оптические и магнитооптические диски 20
2.3. Носители на базе флэш-памяти…………………………………………….23
3. ВЛИЯНИЕ ТИПА НОСИТЕЛЯ ИНФОРМАЦИИ НА ДОЛГОВЕЧНОСТЬ И СТОИМОСТЬ ДОКУМЕНТА………………………………………………..26
ЗАКЛЮЧЕНИЕ 33
СПИСОК ЛИТЕРАТУРЫ 34

Файлы: 1 файл

Курсач-МНИ и их развитие.doc

— 165.00 Кб (Скачать)

В интеллектуальных картах, которые иногда называют смарт-картами (от англ. smart –умный), кроме памяти, встроен ещё и микропроцессор. Он даёт возможность производить необходимые расчёты и делает пластиковые карты многофункциональными.

Технологии и материальные носители магнитной записи постоянно совершенствуются. В частности, наблюдается тенденция к увеличению плотности записи информации на магнитных дисках при уменьшении его размеров и снижении среднего времени доступа к информации.

 

2.2 Оптические и магнитооптические диски

 

Развитие материальных носителей информации в целом идёт по пути непрерывного поиска объектов с высокой долговечностью, большой информационной ёмкостью при минимальных физических размерах носителя. Начиная с 1980-х годов, всё более широкое распространение получают оптические (лазерные) диски. Это пластиковые или алюминиевые диски, предназначенные для записи и воспроизведения информации при помощи лазерного луча.

Впервые оптическая запись звуковых программ для бытовых целей была осуществлена в 1982 г. фирмами «Sony» и «Philips» в лазерных проигрывателях на компакт-дисках, которые стали обозначаться аббревиатурой CD (Compact Disc). В середине 1980-х годов были созданы компакт-диски с постоянной памятью – CD-ROM (Compact Disc – Read Only Memory). C 1995 стали использоваться перезаписываемые оптические компакт-диски: CD-R (CD Recordable) и CD-E (CD Erasable).

Оптические диски имеют обычно поликарбонатную или стеклянную термообработанную основу. Рабочий слой оптических дисков изготавливают в виде тончайших плёнок легкоплавких металлов (теллур) или сплавов (теллур-селен, теллур-углерод, теллур-селен-свинец и др.), органических красителей. Информационная поверхность оптических дисков покрыта миллиметровым слоем прочного прозрачного пластика (поликарбоната). В процессе записи и воспроизведения на оптических дисках роль преобразователя сигналов выполняет лазерный луч, сфокусированный на рабочем слое диска в пятно диаметром около 1 мкм. При вращении диска лазерный луч следует вдоль дорожки диска, ширина которой также близка к 1 мкм. Возможность фокусировки луча в пятно малого размера позволяет формировать на диске метки площадью 1-3 мкм. В качестве источника света используются лазеры (аргоновые, гелий-кадмиевые и др.). В результате плотность записи оказывается на несколько порядков выше предела, обеспечиваемого магнитным способом записи. Информационная ёмкость оптического диска достигает 1 Гбайт (при диаметре диска 130 мм) и 2-4 Гбайт (при диаметре 300 мм).

В отличие от магнитных способов записи и воспроизведения, оптические методы являются бесконтактными. Лазерный луч фокусируется на диск объективом, отстоящим от носителя на расстоянии до 1 мм. При этом практически исключается возможность механического повреждения оптического диска. Для хорошего отражения лазерного луча используется так называемое “зеркальное” покрытие дисков алюминием или серебром.[9]

Широкое применение в качестве носителя информации получили также магнитооптические компакт-диски типа RW (Re Writeble). На них запись информации осуществляется магнитной головкой с одновременным использованием лазерного луча. Лазерный луч нагревает точку на диске, а электромагнит изменяет магнитную ориентацию этой точки. Считывание же производится лазерным лучом меньшей мощности.

Во второй половине 1990-х годов появились новые, весьма перспективные носители документированной информации – цифровые универсальные видеодиски DVD (Digital Versatile Disk) типа DVD-ROM, DVD-RAM, DVD-R с большой ёмкостью (до 17 Гбайт). Увеличение их ёмкости связано с использованием лазерного луча меньшего диаметра, а также двухслойной и двусторонней записи.

По технологии применения оптические, магнитооптические и цифровые компакт-диски делятся на 3 основных класса:

1.                  диски с постоянной (нестираемой) информацией (CD-ROM). Это пластиковые компакт-диски диаметром 4,72 дюйма и толщиной 0,05 дюйма. Они изготавливаются с помощью стеклянного диска-оригинала, на который наносится фоторегистрирующий слой. В этом слое лазерная система записи формирует систему питов (меток в виде микроскопических впадин), которая затем переносится на тиражируемые диски-копии. Считывание информации осуществляется также лазерным лучом в оптическом дисководе персонального компьютера. CD-ROM обычно обладают ёмкостью 650 Мбайт и используются для записи цифровых звуковых программ, программного обеспечения для ЭВМ и т.п.;

2.                  диски, допускающие однократную запись и многократное воспроизведение сигналов без возможности их стирания (CD-R; CD-WORM – Write-Once, Read-Many – один раз записал, много раз считал). Используются в электронных архивах и банках данных, во внешних накопителях ЭВМ. Они представляют собой основу из прозрачного материала, на которую нанесён рабочий слой;

3.                  реверсивные оптические диски, позволяющие многократно записывать, воспроизводить и стирать сигналы (CD-RW; CD-E). Это наиболее универсальные диски, способные заменить магнитные носители практически во всех областях применения. Они аналогичны дискам для однократной записи, но содержат рабочий слой, в котором физические процессы записи являются обратимыми. Технология изготовления таких дисков сложнее, поэтому они стоят дороже дисков для однократной записи.

В настоящее время оптические (лазерные) диски являются наиболее надёжными материальными носителями документированной информации, записанной цифровым способом. Вместе с тем активно ведутся работы по созданию ещё более компактных носителей информации с использованием так называемых нанотехнологий, работающих с атомами и молекулами. Плотность упаковки элементов, собранных из атомов, в тысячи раз больше, чем в современной микроэлектронике. В результате один компакт-диск, изготовленный по нанотехнологии, может заменить тысячи лазерных дисков.

 

2.3 Носители на базе флэш-памяти

 

Один из самых современных и перспективных носителей документированной информации — твердотельная флэш-память, представляющая собой микросхему на кремниевом кристалле. Это особый вид энергонезависимой перезаписывае­мой полупроводниковой памяти. Название связано с огромной скоростью стирания микросхемы флэш-памяти ("in a flash" — в мгновение ока).

Для хранения информации флэш-носители не требуют до­полнительной энергии, которая необходима только для записи. Причём по сравнению с жёсткими дисками и носителями CD-ROM для записи информации на флэш-носителях требуется в десятки раз меньше энергии, поскольку не нужно приводить в действие механические устройства, как раз и потребляющие большую часть энергии. Сохранение электрического заряда в ячейках флэш-памяти при отсутствии электрического питания обеспечивается с помощью так называемого плавающего за­твора транзистора.

Носители на базе флэш-памяти могут хранить записанную информацию очень длительное время (от 20 до 100 лет). Буду­чи упакованы в прочный жёсткий пластиковый корпус, микро­схемы флэш-памяти способны выдерживать значительные ме­ханические нагрузки (в 5-10 раз превышающие предельно до­пустимые для обычных жёстких дисков). Надёжность такого рода носителей обусловлена и тем, что они не содержат меха­нически движущихся частей. В отличие от магнитных, оптиче­ских и магнитооптических носителей, здесь не требуется применение дисководов с использованием сложной прецизионной механики. Их отличает также бесшумная работа.

Кроме того, эти носители очень компактны. Уже первые карты CompactFlash (CF) имели размеры 43x36x3,3 мм. А вскоре появились одни из самых маленьких устройств хране­ния информации — MultiMediaCard величиной всего лишь с почтовую марку и весом менее двух граммов.

Информацию на флэш-носителях можно изменять, т. е. перезаписывать. Помимо носителей с единственным цик­лом записи, существует флэш-память с количеством допусти­мых циклов записи/стирания до 10000, а также от 10000 до 1000000 циклов. Все эти типы принципиально не отличаются друг от друга. Отличия имеются лишь в архитектуре.

Несмотря на миниатюрные размеры, флэш-карты обладают большой ёмкостью памяти, составляющей многие сотни Мбайт. Они универсальны по своему применению, позволяя записывать и хранить любую цифровую информацию, в том числе музыкальную, видео- и фотографическую.

Флэш-память исторически происходит от полупроводни­кового ROM (Read Only Memory) (или ПЗУ — постоянно запоминающее устройство). Технология флэш-памяти поя­вилась около 20 лет назад, а промышленное производство началось с середины 1990-х гг. В 1997 г. флэш-карты впер­вые стали применяться в цифровых фотокамерах. Практиче­ски сразу же они вошли в разряд основных носителей ин­формации, широко используемых в самых разных цифровых мультимедийных устройствах — в портативных компьюте­рах, в принтерах, цифровых диктофонах, сотовых телефо­нах, электронных часах, записных книжках, телевизорах, кондиционерах, микроволновых печах, стиральных маши­нах, МРЗ-плеерах, игровых приставках, в цифровых фото- и видеокамерах и т. д.

Флэш-карты являются одним из наиболее перспективных видов материальных носителей документированной информа­ции. Уже разработаны карты нового поколения — Secure Didital, обладающие криптографическими возможностями защиты информации и высокопрочным корпусом, существенно снижающим риск повреждения носителя статическим электри­чеством.

Выпущены карты ёмкостью 4 Гбайт. На них можно помес­тить около 4000 снимков высокого разрешения, или 1000 песен в формате МРЗ, или же полный DVD-фильм. Тем временем уже разработана флэш-карта ёмкостью 8 Гбайт.

Налажено производство так называемых неподвижных флэш-дисков (в действительности они имеют отличающуюся от диска форму) ёмкостью в сотни Мбайт, тоже представляю­щих собой мобильные устройства для хранения и транспорти­ровки информации. К примеру, флэш-диск Canyon Flash Drive имеет размеры 63x15x8,1 мм, а вес всего лишь 8 г. Эти носите­ли легко подключаются к компьютеру.[10]

Таким образом, совершенствование технологии флэш-памяти идёт в направлении увеличения ёмкости, надёжности, компактности, многофункциональности носителей, а также снижения их стоимости.

 

3. ВЛИЯНИЕ ТИПА НОСИТЕЛЯ ИНФОРМАЦИИ НА ДОЛГОВЕЧНОСТЬ И СТОИМОСТЬ ДОКУМЕНТА

 

Передача документированной информации во времени и пространстве непосредственно связана с физическими характеристиками её материального носителя. Документы, будучи массовым общественным продуктом, отличаются сравнительно низкой долговечностью. Во время своего функционирования в оперативной среде и особенно при хранении они подвергаются многочисленным негативным воздействиям, вследствие перепадов температуры, влажности, под влиянием света, биологических процессов и т.д. К примеру, в настоящее время известно около 400 видов грибов и насекомых, обнаруженных на документах и книгах, способных поражать бумагу, кальку, ткани, дерево, кожу, металл, кинофотоплёнку и другие материалы.

Поэтому не случайно проблема долговечности материальных носителей информации во все времена привлекала внимание участников процесса документирования. Уже в древности наблюдается стремление зафиксировать наиболее важную информацию на таких сравнительно долговечных материалах, как камень, металл. К примеру, законы вавилонского царя Хаммурапи были высечены на каменном столбе. И в наши дни эти материалы используются для длительного сохранения информации, в частности, в мемориальных комплексах, на местах захоронений и т.п.

В процессе документирования наблюдалось стремление использовать качественные, стойкие краски, чернила. В значительной степени благодаря этому до нас дошли многие важные текстовые исторические памятники, документы прошлого. И, напротив, использование недолговечных материальных носителей (пальмовые листья, деревянные дощечки, берёста и т.п.) привели к безвозвратной утрате большинства текстовых документов далёкого прошлого.

Однако, решая проблему долговечности, человек сразу же вынужден был заниматься и другой проблемой, заключавшейся в том, что долговечные носители информации были, как правило, и более дорогостоящими. Так, книги на пергаменте нередко приравнивались по цене к каменному дому или даже к целому поместью, вносились в завещание, наряду с другим имуществом, а в библиотеках приковывались цепями к стене. Поэтому постоянно приходилось искать оптимальное соотношение между долговечностью материального носителя информации и его стоимостью. Эта проблема до сих пор остаётся весьма важной и актуальной.

Наиболее распространённый в настоящее время материальный носитель документированной информации – бумага – обладает относительной дешевизной, доступностью, удовлетворяет необходимым требованиям по своему качеству и т.д. Однако в то же время бумага является горючим материалом, боится излишней влажности, плесени, солнечных лучей, нуждается в определённых санитарно-биологических условиях. Использование недостаточно качественных чернил, краски приводят к постепенному угасанию текста на бумаге.

В конце XX века с развитием компьютерных технологий и использованием принтеров для вывода информации на бумажный носитель вновь возникла проблема долговечности бумажных документов. Дело в том, что многие современные распечатки текстов на принтерах водорастворимы и выцветают. Более долговечные краски, в частности, для струйных принтеров, естественно, являются и более дорогими, а значит – менее доступными для массового потребителя. Использование в России “пиратских” перезаряженных картриджей и тонеров только усугубляет ситуацию.[11]

Материальные носители документированной информации требуют, таким образом, соответствующих условий для их хранения. Однако это далеко не всегда соблюдалось и соблюдается. В результате из ведомственных архивов на государственное хранение в нашей стране документы поступают с дефектами. В 1920-е годы количество дефектов достигало 10-20 %, с 1950-х годов стало уменьшаться от 5 до 1 %, в 1960-1980-е годы было на уровне 0,3-0,5 % (хотя в абсолютных цифрах это составляло 1-2,5 млн. документов). В 1990-е годы хранение документов в ведомственных архивах вновь ухудшилось, как и в первые десятилетия существования советской власти. Всё это оборачивается значительными материальными потерями, поскольку в архивах и библиотеках приходится создавать и содержать дорогостоящие лаборатории, которые занимаются реставрацией бумажных носителей. Приходится также изготавливать архивные копии документов с угасающим текстом и т.п.

В Советском Союзе в своё время была даже создана правительственная программа, предусматривавшая разработку и выпуск отечественных долговечных бумаг для документов, специальных стабильных средств письма и копирования, а также ограничение с помощью нормативов применения недолговечных материалов для создания документов. В соответствии с этой программой, к 1990-м годам были разработаны и стали выпускаться специальные долговечные бумаги для делопроизводства, рассчитанные на 850 и 1000 лет. Был также скорректирован состав отечественных средств письма. Однако дальнейшая реализация программы в современных российских условиях оказалась невозможна, вследствие радикальных социально-политических и экономических преобразований, а также в результате очень быстрой смены способов и средств документирования.

Информация о работе Материальные носители информации и их развитие