Электроопасность на производстве

Автор: Пользователь скрыл имя, 12 Декабря 2010 в 16:24, реферат

Краткое описание

Различают постоянный и переменный электрический ток. Сегодня распространено использование переменного тока частотой от 50 Гц до 300 ГГц.

Разберем этот диапазон более подробно:

•Ток промышленной частоты, 50 Гц, используется в системах электрификации производства и быта.
•Ток низкой частоты, 3-300 кГц – в радиовещании, при плавке, сварке, термообработке металлов.
•Ток средней частоты, 0,3-3,0 МГц – в радиовещании, при индуктивном нагреве металлов и других материалов.
•Ток высокой частоты, 3,0-30 МГц – в радиовещании, телевидении, в медицине, при сварке полимеров.
•Ток очень высокой частоты, 30-300 МГц – в радиовещании, телевидении, в медицине, при сварке полимеров.
•Ток ультравысокой частоты, 0,3-3,0 ГГц – в радиолокации, в многоканальной радиосвязи, в радиоастрономии, в радиоспектроскопии, в радионавигации, в радиорелейной связи, в телекоммуникации, в дефектоскопии, в геодезии, в физиотерапии, при стерилизации и приготовлении пищи и др.
•Ток сверхвысокой частоты. 3-30 ГГц.
•Ток крайне высокой частоты, 30-300 ГГц.
В этой работе мы рассмотрим действие тока на организм человека; условия, при которых возникает опасность электропоражения, а также меры по его недопущению и предупреждению.

Оглавление

1.Вступление
2.Влияние электрического тока на человеческий организм.
3.Виды поражений электрическим током.
4.Электрический удар
5.Электрическое сопротивление тела человека.
6.Основные факторы, влияющие на исход поражения током.
7.Критерии безопасности для электрического тока.
8.Условия, при которых происходит поражение током.
9.Меры по обеспечению электробезопасности на производстве.
10.Организационные меры защиты.
11.Организационно-технические меры защиты.
12.Технические меры защиты.
13.Заключение.
14.Список использованной литературы.

Файлы: 1 файл

электроопасность на производстве.doc

— 111.00 Кб (Скачать)

В сухом  и незагрязнённом виде роговой слой можно рассматривать как диэлектрик. Другие слои эпидермиса (ростковый  слой) в несколько раз тоньше рогового слоя и обладает значительно меньшим  сопротивлением.

Внутренний  слой кожи – дерма является живой  тканью. Электрическое сопротивление  дермы невелико.

Сопротивление тела человека при сухой, чистой и  неповреждённой коже (измеренное при  напряжении до 15-20 В) колеблется в пределах примерно от 3000 до 100 000 Ом, а иногда и более. Сопротивление тела человека, то есть сопротивление между двумя электродами, наложенными на поверхность тела, можно условно считать состоящим из трёх последовательно включённых сопротивлений: двух одинаковых наружных слоя кожи (эпидермиса), составляющих в совокупности так называемое наружное сопротивление тела человека, и одного, называемого внутренним сопротивлением тела, включающим в себя два сопротивления внутреннего слоя кожи (дермы) и сопротивление внутренних тканей тела.

Наружное сопротивление тела обладает не только активным сопротивлением, но и ёмкостным, так как в месте прикосновения электродов к телу человека образуются как бы конденсаторы, обкладками которых являются электроды и хорошо проводящие токи ткани тела человека, лежащие под наружным слоем кожи, а диэлектриком – наружный слой (эпидермис). Внутреннее сопротивление тела считается чисто активным.

Обычно  при переменном токе промышленной частоты  учитывают лишь активное сопротивление  тела человека и принимают его  равным 1000 Ом. В действительности это сопротивление – величина переменная, имеющая нелинейную зависимость от множества факторов, в том числе от состояния кожи, параметров электрической цепи, физиологических факторов и состояния окружающей среды.

Состояние кожи – очень сильно сказывается на величине сопротивления тела человека. Так, повреждение рогового слоя, в том числе порезы, царапины, ссадины и другие микротравмы, могут снизить полное сопротивление тела до значения, близкого к величине внутреннего сопротивления, что безусловно увеличивает опасность поражения человека током. Такое же влияние оказывает и увлажнение кожи водой или за счёт пота, а также загрязнение кожи проводящей пылью или грязью.

Поскольку у одного итого же человека сопротивление  кожи неодинаково на разных участках тела, то на сопротивление в целом сказывается место приложения контактов, а также их площадь. Величина тока и длительность его прохождения через тело оказывают непосредственное влияние на полное сопротивление: с ростом тока и времени его прохождения сопротивление падает, поскольку при этом усиливается местный нагрев кожи, что приводит к расширению её сосудов, и следовательно, к усилению снабжения этого участка кровью и увеличению потовыделения.

Повышение напряжения, приложенного к телу человека, вызывает уменьшение в десятки раз сопротивления кожи, а следовательно, и полного сопротивления тела человека, приближающегося в пределе к своему наименьшему значению – 300-500 Ом.

Наличие ёмкостной составляющей в сопротивлении  тела человека обусловливает влияние рода и частоты тока на величину полного сопротивления. Так, при частоте 10-20 кГц и более можно считать, что наружный слой кожи практически утрачивает сопротивление электрическому току, и полное сопротивление кожи состоит только из внутреннего сопротивления тела человека (то есть из сопротивлений дермы и внутренних тканей тела).

Основные  факторы, влияющие на исход поражения  током.

Величина  электрического тока, проходящего через  тело человека, является основным фактором, обусловливающим исход поражения. Вместе с тем большое значение имеют длительность воздействия тока, его частота, а также некоторые другие факторы. Сопротивление тела человека и величина приложенного к нему напряжения также влияют на исход поражения, но лишь постольку, поскольку они определяют величину тока, проходящего через человека. Человек начинает ощущать воздействие проходящего через него тока малой величины: 0.6-1,5 мА при переменном токе с частотой 50 Гц и 5-7 мА при постоянном токе. Этот ток называется порогом ощутимых токов или пороговым ощутимым током. Большие токи вызывают судороги мышц и неприятные болезненные ощущения, которые с ростом тока усиливаются и распространяются на всё большие участки тела. При 10-15 мА боль становиться едва переносимой, а судороги мышц рук оказываются настолько значительными, что человек не в состоянии их преодолеть; в результате он не может разжать руку, в которой зажата токоведущая часть, он не может отбросить от себя провод и т.п., то есть он не в состоянии самостоятельно нарушить контакт с токоведущей частью и оказывается как бы прикованным к ней. Такой же эффект производят и токи большей величины. Все это токи носят название неотпускающих, а наименьший из них – 10-15 мА при частоте 50 Гц (и 50-80 мА при постоянном токе) называется порогом неотпускающих токов или пороговым неотпускающим током.

Ток 25-50 мА при частоте 50 Гц воздействует на мышцы не только рук, но и туловища, в том числе и на мышцы грудной  клетки, в результате чего дыхание  сильно затрудняется. Длительное воздействие этого тока может вызвать прекращение дыхания, после чего спустя некоторое время наступит смерть от удушья. Ток более 50 мА вплоть до 100 мА при 50 Гц ещё быстрее нарушает работу лёгких и сердца. Однако в этом случае, как и при меньших токах, первыми по времени поражаются лёгкие и затем – сердце.

Переменный  ток от 100 мА до 5 А при частоте 50 Гц и постоянный от 300 мА до 5 А действуют  непосредственно на мышцу сердца, что весьма опасно для жизни, поскольку  спустя 1-2с с момента замыкания  цепи этого тока через человека может наступить фибрилляция. При этом прекращается кровообращение и в организме возникает недостаток кислорода, что, в свою очередь, приводит к прекращению дыхания, то есть наступает смерть. Эти токи называют фибрилляционными, а наименьший из них – пороговым фибрилляционным током.

Ток более 5 А, как правило, фибрилляцию сердца не вызывает. При таких токах происходит немедленная остановка сердца, минуя  состояние фибрилляции, а также  паралич дыхания. В случае, если действие тока было кратковременным (до 1-2с) и не вызвало повреждение сердца (в результате нагрева, ожога и т.п.), то после отключения тока сердце, как правило, самостоятельно возобновляет нормальную деятельность. Дыхание про этом самостоятельно не восстанавливается и требуется немедленная помощь пострадавшему в виде искусственного дыхания.

Длительность  прохождения тока через живой  организм существенно влияет на исход  поражения: чем продолжительнее  действие тока, тем больше вероятность  тяжёлого поражения или смертельного исхода. Такая зависимость объясняется  тем, что с увеличением времени воздействия тока на живую ткань растёт величина этого тока, повышается вероятность совпадения момента прохождения тока через сердце с уязвимой фазой Т сердечного цикла (0,2с).

Путь  тока в теле пострадавшего играет существенную роль в исходе поражения. Если на пути тока оказываются жизненно важные органы – сердце, органы дыхания, головной мозг, то опасность поражения весьма велика, поскольку ток воздействует непосредственно на эти органы. Когда ток проходит по иным путям, то воздействие на жизненно важные органы может быть лишь рефлекторным, благодаря чему вероятность тяжёлого поражения резко снижается. Так как сопротивление кожи на разных участках тела различно, то влияние пути тока на исход поражения зависит и от места приложения токоведущих путей к телу пострадавшего.

Возможных путей тока в теле человека очень  много; наиболее часто встречаются  следующие: правая рука – ноги, левая  рука – ноги, рука – рука и нога – нога. Опасность того или иного  пути тока можно оценивать по тяжести  поражения, а также по значению тока, протекающего через сердце, при данной петле.

Известно, что значение тока, проходящего через  сердце человека (в процентах от величины общего тока, проходящего  через тело), составляет при пути правая рука – ноги – 6,7 %; левая рука – ноги – 3,7 %; рука – рука – 3,3 %; нога – нога – 0,4 % .

Таким образом, наиболее опасным является путь правая рука – ноги, а наименее опасным – путь нога – нога.

Постоянный  ток, как показывает практика, примерно в 4-5 раз безопаснее, чем переменный ток промышленной частоты (50 Гц). Однако это справедливо для относительно небольших напряжений – до 250-300 В. При более высоких напряжениях опасность постоянного тока возрастает.

Индивидуальные  свойства человека играют заметную роль в исходе поражения. Установлено, что здоровые и физически крепкие люди легче переносят электрические удары, чем больные и слабые. Повышенной восприимчивостью к электрическому току обладают лица, страдающие рядом заболеваний, прежде всего болезнями кожи, сердечно-сосудистой системы, органов внутренней секреции, лёгких, нервными болезнями и др.  
 

Критерии  безопасности для  электрического тока.

Защитные  системы от поражения током должны строиться исходя из безопасных для  человека значений тока при данном пути и длительности его протекания и других факторов. Для нужд практической электротехники выработаны нормативные значения допустимых токов промышленной частоты.

Эти токи считаются допустимыми для наиболее вероятных путей их протекания в  теле человека: рука – рука, рука –  ноги и нога – нога. Они не могут рассматриваться как обеспечивающие полную безопасность и принимаются в качестве допустимых с достаточно малой вероятностью поражения.

Условия, при которых происходит поражение током

Человек попадает под воздействие электрического тока при случайном прикосновении к токоведущим частям электроустановки или приближении на недопустимо близкое расстояние, при возникновении в электроустановке аварийного режима; при несоответствии параметров электроустановки нормам, а также при нарушении правил техники безопасности и эксплуатации электроустановок.

При рассмотрении условий возникновения электрической  цепи через тело человека различают  прямой контакт человека с токоведущими частями и косвенный. Прямой контакт  возникает, как правило, в результате нарушения правил техники безопасности и эксплуатации электроустановок, а косвенный – при пробое изоляции на корпус оборудования.

Замыкание на корпус – случайное электрическое  соединение токоведущей части с  металлическими нетоковедущими частями электроустановки. Замыкание на землю – случайное электрическое соединение токоведущей части с землёй или нетоковедущими проводящими конструкциями или предметами, не изолированными от земли.

Ток через  тело человека проходит в том случае, когда человек одновременно касается двух точек, между которыми существует напряжение. Величина поражающего тока зависит от того, каких частей электроустановки касается человек, то есть от условий поражения.

Могут наблюдаться следующие условия  поражения:

   А) двухполюсное прикосновение к токоведущим частям

При двухполюсном прикосновении к токоведущим  частям человек одновременно касается частями тела (например, руками) токоведущих  частей оборудования.

   Б) однополюсное прикосновение  к токоведущим частям

Цепь  тока через тело человека в сети с изолированной нейтралью (то есть с нейтралью, не присоединённой к заземляющему устройству или присоединённой через аппараты, имеющие большое сопротивление) замыкается через землю и проводимости, существующие между фазами сети и землёй. В сети с заземлённой нейтралью (то есть с нейтралью, присоединённой к заземляющему устройству непосредственно или через малое сопротивление) ток замыкается через человека, землю и заземление нейтрали. Таким образом, при однополюсном прикосновении одна из точек касания – точка грунта (земли).

В) прикосновение  к заземлённым нетоковедущим  частям, оказавшимся под напряжением

Под нетоковедущими частями понимают металлические  части, формально не находящиеся  под напряжением. Они могут оказаться  под напряжением лишь случайно, в результате повреждения изоляции электроустановки, например, при повреждении корпуса оборудования, оболочки кабелей и т.п. При прикосновении к заземлённому оборудованию, оказавшемуся под напряжением, человек находится в зоне растекания тока, то есть в зоне, каждая точка которой имеет определённый электрический потенциал, обусловленный протеканием через заземлитель тока замыкания на землю.  
 
 

Меры  по обеспечению электробезопасности  на производстве

Все существующие меры защиты по принципу их действия можно разделить на три группы:

- обеспечение  недоступности токоведущих частей  оборудования;

- снижение  напряжения прикосновения (а, следовательно, и тока через человека) до безопасного значения;

- ограничение  продолжительности воздействия  электрического тока на организм человека.

Информация о работе Электроопасность на производстве