Автор: Пользователь скрыл имя, 22 Октября 2012 в 17:26, реферат
Экология (от греч. oikos - дом, местообитание) микроорганизмов изучает развитие и функционирование отдельных видов микроорганизмов н их естественных сообществ (микробоценозов) в природной среде. Микроорганизмы обитают во всех природных средах и являются обязательным компонентом любой экологической системы и биосферы в целом. Это обусловлено их широкими метаболическими способностями, благодаря которым они могут использовать для энергетических и конструктивных целей практически все природные и синтетические соединения.
На пороге XXI в. как никогда, возрос интерес к экологии микроорганизмов в связи с расширением производственно-бытовой деятельности человека и его активным воздействием на биосферу. Механизация, мелиорация, химизация и радиация привели к глобальным преобразованиям внешней среды, выразившимся в нарушении складывающихся миллионы лет природных биоценозов, в том числе и микробных. Количественные и качественные изменения микробных ассоциаций во многом отразились на экологии планеты в целом.
Введение2
Влияние факторов внешней среды на микроорганизмы3
Взаимоотношение в мире микроорганизмов10
Экологические связи в микробиоценозах10
Взаимоотношения микроорганизмов с высшими растениями16
Взаимоотношения микроорганизмов с животными и человеком. Антимикробные мероприятия в профилактике и лечении инфекционных болезней19
Экологические среды24
Почва
Вода
Воздух
Пищевые продукты 24
Роль микроорганизмов в возникновении и существовании биосферы.32
Проблема загрязнения природных экосистем и возможности самоочищения39
Заключение43
Список литературы44
СОДЕРЖАНИЕ
Введение |
2 |
Влияние факторов внешней среды на микроорганизмы |
3 |
Взаимоотношение в мире микроорганизмов |
10 |
|
10 |
|
16 |
|
19
|
Экологические среды |
24 |
|
24 26 28 30 |
Роль микроорганизмов
в возникновении и |
32 |
Проблема загрязнения
природных экосистем и |
39 |
Заключение |
43 |
Список литературы |
44 |
ВВЕДЕНИЕ
Экология (от греч. oikos - дом, местообитание) микроорганизмов изучает развитие и функционирование отдельных видов микроорганизмов н их естественных сообществ (микробоценозов) в природной среде. Микроорганизмы обитают во всех природных средах и являются обязательным компонентом любой экологической системы и биосферы в целом. Это обусловлено их широкими метаболическими способностями, благодаря которым они могут использовать для энергетических и конструктивных целей практически все природные и синтетические соединения.
На пороге XXI в. как никогда, возрос
интерес к экологии микроорганизмов
в связи с расширением
Изучение распространения
ВЛИЯНИЕ ВАКТОРОВ ВНЕШНЕЙ СРЕДЫ НА МИКРООРГАНИЗМЫ
Совокупность физико-химических условий окружающей среды составляют абиотические факторы. Жизнедеятельность любого организма возможна в определенном интервале значений каждого фактора. Этот интервал, крайние значения которого являются пределами толерантности организма, условно делят на три области. Зоной лимитирования называют область, в которой низкие значения фактора ограничивают жизнедеятельность. Оптимальная зона – это область значений, в которой жизненные показатели организма наилучшие и практически не меняются. Область избыточных значений фактора, где жизнедеятельность организма подавляется, носит название зоны ингибирования.
Обычными, или нормальными
считают повсеместно
Микроорганизмы распространены
повсеместно, поэтому условия их
жизни чрезвычайно
Активность воды
Важным количественным показателем доступности воды, которая необходима микроорганизмам для осуществления метаболизма, является активность воды ɑw. Она определяется как отношение давления паров раствора к давлению паров чистой воды. Этот показатель зависит как от самого наличия воды, т.е. от степени высушивания, так и от содержания в ней растворенных веществ. Некоторые микроорганизмы столь чувствительны к понижению активности воды, что даже не способны расти на твердых средах. Другие, называемые ксерофилами, предпочтительно растут при низких значениях ɑw.
Природными средами с высокими концентрациями разных солей являются соленые и содовые озера, солонцы, солеварни, Мертвое море. При заготовке продуктов издавна используют высокие концентрации поваренной соли и сахара. Микроорганизмы, способные существовать в растворах с высокой концентрацией веществ, называются осмофилами. Наиболее изучены среди них те, которым необходимо повышенное содержание поваренной соли (галофилы). Они подразделяются на несколько групп. Галотолерантные микроорганизмы (например, из рода Streptococcus) выдерживают до 10% (2,0 М) соли в среде, но предпочитают расти при низкой ее концентрации. Слабогалофильные представители, в частности из рода Vibriо, растут при содержании соли от 2 до 5% (0,2-0,5 М). Большинство морских обитателей относится к умеренным галофилам. Интервал солености для них составляет 5-15% (0,5-2,5 М) NaCl. Экстремальные галофилы (например, галоархеи) растут при содержании соли от 15% (2,5-5,2 М) и до насыщения. Негалофильные (пресноводные) микроорганизмы растут при содержании соли не более 0,01%, а более высокие концентрации подавляют их развитие.
рН среды
Показатель кислотности среды (рН) представляет собой отрицательный логарифм концентрации ионов водорода, принимающий значения от 0 до 14. Концентрация водородных ионов воздействует на ионное состояние вещества и, следовательно, на доступность для клетки многих метаболитов, т.к. в незаряженном состоянии они легче проникают через мембрану
По отношению к
оптимальным для роста
Температура
Физиологическая активность микроорганизмов в значительной степени определяется температурой окружающей среды. Для каждого микроорганизма обычно указывают минимальную, оптимальную и максимальную температуры роста. Нижние пределы роста по температуре ограничены температурой «застывания» мембраны, когда она теряет свои функции, а верхние – тепловой денатурацией жизненно важных молекул. К низкотемпературным местам обитания относятся регионы Арктики, Антарктики, тундра, глубины океанов, где температура имеет постоянное значение около +4оС. Высокая температура поддерживается в гейзерах, вулканических источниках, на выходах вулканических горячих газов из разломов земной коры в глубинах океанов, где температура при высоком давлении может достигать +360оС. Существуют и искусственно созданные, экстремальные по температуре места обитания (морозильные камеры, ферментеры, автоклавы и т.д.). Большинство земных организмов имеет низший температурный предел 0оС. По отношению к температуре все микроорганизмы условно подразделяются на несколько групп (табл.).
Таблица. Группы микроорганизмов с разными температурными пределами роста.
Группа |
Температура роста, оС | ||
минимальная |
оптимальная |
максимальная | |
Психрофилы |
-36 |
< +20 |
+25 |
Мезофилы |
+15 |
+25 – +37 |
+40 |
Термофилы |
+40 |
+55 – +65 |
+70 – +80 |
Экстремальные: термофилы гипертермофилы |
+60 +70 |
+75 – +85 +80 – +90 |
+90 +113 – +121 |
Гидростатическое давление
Большинство микроорганизмов, живущих на поверхности земли или воды, никогда не подвергаются существенным изменениям давления и растут при давлении ~ 1 атм. Но есть места, где давление значительно отличается от атмосферного. Повышенное давление в природе наблюдается в глубоких нефтяных скважинах и в глубинных зонах океанов, а в антропогенных системах – в барокамерах и автоклавах. Микроорганизмы, прекращающие рост при повышении давления, называют барочувствительными (пьезочувствительными). К баротолерантным (пьезотолерантным) относят микроорганизмы, растущие при обычном давлении, но способные переносить его повышение до 400 атм. Барофилы (пьезофилы) для нормального роста нуждаются в повышенном давлении (до 900 атм). Микроорганизмы, обнаруженные на дне Марианской впадины, где давление достигает 1016 атм, относят к экстремальным барофилам. Данных об их физиологии очень мало, поскольку работа с такими микроорганизмами требует очень дорогостоящего оборудования для взятия и доставки проб в лабораторию и последующего поддержания культур.
Электромагнитные излучения
Электромагнитные излучения подразделяются в зависимости от длины волны на ионизирующее и ультрафиолетовое излучения, видимую область, инфракрасное излучение и радиоволны. В зависимости от длины волны и дозы излучения могут оказывать тепловое, механическое, физиологическое действие, вызывать мутации и гибель клеток.
Ближний ультрафиолет, видимый свет и инфракрасные лучи являются движущей силой фотосинтеза (350-400-800-1100 нм). Разные фототрофные микроорганизмы поглощают свет различной длины волны в соответствии с максимумами поглощения их пигментов. Поскольку при фотосинтезе световая энергия преобразуется в энергию химических связей, то энергии излучения должно хватать на возбуждение молекулы фотосинтетического пигмента, но при этом она не должна быть избыточной, чтобы не повредить фотосинтетический аппарат. Электромагнитные волны важны для проявления фототаксиса. У некоторых микроорганизмов, не способных к фотосинтезу, обнаружены светозависимые синтезы. Например, микобактерии при росте в освещенном месте формируют колонии, окрашенные в яркие желто-красные цвета из-за синтеза каротиноидов.
Микроорганизмы весьма существенно различаются по устойчивости к радиации. Так, для микроорганизмов, выделенных из облученных продуктов и из воды атомных реакторов (Deinococcus radiodurans, Shizosaccharomyces pombe, жгутикового простейшего Boda marina), смертельная доза радиации в десятки тысяч раз превышает дозу для высших организмов. Устойчивость, по-видимому, связана с высокой эффективностью репарационных систем. Однако для большинства микроорганизмов ультрафиолет и ионизирующие излучения в определенных дозах губительны и поэтому могут использоваться для стерилизации. При этом следует помнить о возможности появления устойчивых к облучению форм. В свете этих данных перенесение микроорганизмов (особенно спор) через космическое пространство не кажется таким уж невероятным.
Наличие молекулярного кислорода
По своему отношению
к кислороду микроорганизмы условно
делятся на несколько групп. Облигатные
аэробы нуждаются в молекулярном
кислороде для окисления
Среди аэробов выделяют
группу микроорганизмов-
Факультативные анаэробы способны переключать свой обмен веществ в зависимости от наличия или отсутствия кислорода с аэробного дыхания на анаэробные процессы. Как правило, в присутствии кислорода такие микроорганизмы растут быстрее и накапливают больше биомассы. К факультативным анаэробам относятся Saccharomyces cerevisiae, многие энтеробактерии (E. coli) и бациллы.
Облигатные анаэробы не нуждаются в кислороде для своей жизнедеятельности, более того, в его присутствии происходит угнетение или гибель клеток. В эту группу входят метанобразующие археи, гомоацетогенные бактерии, большинство сульфатредукторов, некоторые грибы и простейшие. При культивировании облигатных анаэробов используют специальные приемы. Кислород удаляют из среды кипячением, сосуды тщательно укупоривают резиновыми пробками с металлическими колпачками, газовую фазу культивационного сосуда заменяют на азот или аргон. Для удаления следовых количеств кислорода в среду вносят восстановители (сульфид натрия) и в дальнейшем поддерживают анаэробные условия, исключая попадание кислорода при пересевах.