Автор: Пользователь скрыл имя, 13 Мая 2012 в 00:22, реферат
Многоклеточный организм высших животных и растений является продуктом онтогенетического развития, при котором из одной клетки (зиготы), образовавшейся в результате слияния двух половых клеток родителей (гамет), путем большого числа дроблений образуется вся совокупность высокодифференцированных клеток органов и тканей организма. Поскольку любая соматическая клетка или клетка зародышевого пути, в конечном счете, берет свое начало от двух объединившихся родительских клеток, она, как правило, заключает в себе всю (или большую часть) генетическую информацию родительских организмов.
Рис. 8. Клонирование овцы методом переноса ядра. Ядро яйцеклетки удаляют с помощью микропипетки. Культивируют эпителиальные клетки молочной железы взрослой особи и индуцируют их переход в фазу Gо. Осуществляют слияние клетки в Go-фазе и яйцеклеток, лишенных ядра, и выращивают восстановленные яйцеклетки в культуре или в яйцеводе с наложенной лигатурой до ранних стадий эмбриогенеза, а затем имплантируют их в матку «суррогатной» матери, где и происходит дальнейшее развитие. В эксперименте, описанном Уилмутом и др., было проведено слияние 277 яйцеклеток с удаленными ядрами с клетками молочной железы в фазе Gо; из 29 эмбрионов только один развился до жизнеспособного плода.
Перенос генов с помощью искусственных дрожжевых хромосом
Хромосомы высших организмов содержат в своем составе протяженные молекулы ДНК. Например, длина ДНК одной из типичных хромосом человека составляет 100–200 миллионов пар оснований (м.п.о.). Исследование генов в хромосомах высших растений, животных и человека потребовало создания векторов для клонирования фрагментов ДНК длиной в несколько сотен тысяч пар оснований. Этим задачам отвечает недавно созданная система для клонирования сверхдлинных молекул ДНК на основе искусственно полученной мини-хромосомы дрожжей YAC (yeast artificial chromosome). YAC-вектор представляет собой кольцевую молекулу ДНК, содержащую ряд генетических элементов, которые позволяют ей существовать во внехромосомном состоянии в клетках дрожжей (рис. 9).
Вектор заключает в себе две теломерные последовательности нуклеотидов TEL, необходимые для репликации концов мини-хромосомы, и область начала репликации ARS1, соединенную с последовательностью центромеры. Все эти функциональные элементы требуются для репликации YAC-вектора и его правильной передачи в дочерние ядра во время митоза. Кроме того, вектор содержит два селектируемых маркера TRP, восстанавливающих способность к росту ауксотрофных по триптофану клеток дрожжей в отсутствие экзогенного триптофана, а также маркер URA3, компенсирующий генетический дефект клеток дрожжей, который нарушает биосинтез урацила. В векторе имеется также ген супрессорной тРНК sup4, являющийся селектируемым маркером для поддержания вектора в мутантных бактериальных клетках, содержащих амбер-мутации в жизненно важных генах. Помимо этого, он обладает последовательностями нуклеотидов, необходимыми для его репликации в бактериальных клетках.
При подготовке к клонированию YAC-вектор, выделенный в виде плазмиды, расщепляют рестриктазой BamHI и отделяют от образовавшегося короткого фрагмента ДНК, который не требуется для репликации YAC-вектора в дрожжах (этап 1). После этого проводят второе расщепление вектора рестриктазой EcoRI, сопровождающееся образованием двух его "плеч", каждое из которых на одном из концов содержит теломерные последовательности хромосомы дрожжей (этап 2). На заключительном этапе (3) полученные "плечи" лигируют с крупными EcoRI-фрагментами клонируемой ДНК, которые получают путем частичного расщепления высокомолекулярной хромосомной ДНК, предназначенной для клонирования. Полученными таким образом рекомбинантными ДНК трансформируют протопласты клеток дрожжей, и образовавшиеся трансформанты отбирают на селективной твердой питательной среде. В таком векторе удавалось осуществлять клонирование фрагментов ДНК длиной до 700 т.п.о.
При всех своих достоинствах системы клонирования, основанные на векторах семейства YAC, обладают рядом существенных недостатков. В рекомбинантных ДНК, поддерживаемых в таких системах, часто возникают внутренние делеции. Кроме того, при введении рекомбинантных ДНК в клетки дрожжей иногда имеет место проникновение в одну клетку нескольких молекул вектора со вставками. В итоге отдельные клоны дрожжевых клеток могут содержать несколько несцепленных друг с другом молекул рекомбинантных ДНК, а рекомбинация между ними вообще может приводить к образованию химерных молекул. Все это очень затрудняет физическое картирование генов в хромосомах исследуемых объектов.
Рис. 9. Схема клонирования сверхдлинных молекул ДНК с использованием вектора YAC
1 – линеаризация ДНК вектора рестриктазой BamHI;
2 – расщепление линеаризованной ДНК вектора рестриктазой EcoRI с образованием "плечей"; 3 – введение в вектор клонируемого EcoRI-фрагмента ДНК
Трансгенных мышей получали микроинъекцией в пронуклеус оплодотворенной яйцеклетки или трансфекцией ЕS-клеток с помощью YАС, несущих несколько родственных генов или один большой ген. Трансгенные мыши, несущие кластер из пяти функциональных генов β-глобина человека суммарной длиной примерно 250 т. п. н., экспрессировали все эти гены тканеспецифично и в нужное время — точно так же, как это происходит у человека. Такое соответствие обеспечивалось фланкирующими их последовательностями, которые содержат промотор и другие важные регуляторные элементы.
Создание мышей, которые синтезировали бы только человеческие антитела, — это примечательный пример трансгеноза с помощью YАС. Моноклональные антитела можно использовать для лечения некоторых заболеваний человека. Однако получить человеческие моноклональные антитела практически невозможно. К сожалению, и моноклональные антитела грызунов иммуногенны для человека. Чтобы «очеловечить» существующие моноклональные антитела грызунов, были разработаны сложные стратегии с использованием рекомбинантных ДНК. В результате этих трудоемких процедур удалось получить Fv- и Fab-фрагменты, зачастую обладающие каким-то сродством к специфическому антигену. Возможно, технологического прорыва удастся достичь, если использовать для получения полноразмерных человеческих антител более доступный метод с использованием гибридом.
Синтез природных антител — это настоящее чудо. Антитело — очень сложная тетрамерная конструкция, состоящая из двух пар разных цепей. Одна из них называется тяжелой (Н), а другая - легкой (λ или κ). Эти термины отражают различия в молекулярных массах субъединиц антитела. Генетические особенности каждой тяжелой цепи определяются комбинацией вариабельного (VH), дивергентного (DH), шарнирного (JH) и константного (СH) участков (доменов) соматической ДНК в В-клетке. Известны два типа легких цепей, λ и κ, которые образуются в результате перестройки их собственных вариабельных (Vλ, Vκ, шарнирных (Jλ, Jκ) и константных (Сλ, Сκ) доменов. Данная В-клетка синтезирует один вид антител, с уникальной комбинацией участков, составляющих Н-цепь, и либо перестроенной λ-, либо κ-цепью.
Набор генетических элементов, обеспечивающих образование множества разных Н-цепей антител человека, включает около 95 VH-доменов, 30 DH-доменов, 6 JH-доменов и 5 основных константных (Сα, Сγ, Сδ, Сε, Сμ) доменов. Локус κ-генов содержит примерно 76 Vκ-доменов, 5 Jκ-доменов и один константный (Сκ) участок. Размер Н-локусов и κ-генов — от 1 до1,5 т. п. н. Для создания трансгенных мышей, способных синтезировать множество различных человеческих антител, необходимо инактивировать мышиные гены Н- и L-цепей, а затем встроить в хромосомную ДНК мыши YАС, содержащую гены Н- и L-цепей каждого человеческого гена иммуноглобулина.
Чтобы решить эту задачу, мышиные гены Н- и κ-цепей были заменены («нокаутированы») небольшим участком кластера генов Н-цепи человека и кластера генов κ-цепи человека. Трансгенные мыши с таким набором генов антител человека синтезировали человеческие антитела к некоторым антигенам; кроме того, были созданы гибридомы, продуцирующие человеческие моноклональные антитела. Однако разнообразие человеческих антител, продуцируемых такими трансгенными мышами, было невелико вследствие ограниченности набора вариабельных сегментов Н- и κ-цепей. Чтобы решить эту проблему, создали YАС с большим числом генов вариабельных участков Н- и κ-цепей гемоглобина человека.
Объединив четыре разные YАС с генами Н-цепей гемоглобина человека, создали YАС длиной 1000 т. п. н., несущую 66 VH-доменов, около 30 DH-сегментов, 6 JH-доменов, Сμ, Сδ и Сγ. Аналогично, из трех YАС, несущих различные домены Vκ, создали YАС длиной 800 т. п. н. с 32 Vκ-доменами, 5 Jκ-доменами и Сκ. ЕS-клетки трансфицировали по отдельности YАС с генами Н- и κ-цепей методом слияния клеток, отобрали клетки, в которых произошла интеграция YАС, с помощью селективного маркера и проверили целостность каждой вставки методом ПЦР. Инъецировали клетки, несущие встроенные гены Н- либо κ-цепи, в бластоцисты и идентифицировали особь-основателя с помощью ПЦР. Трансгенных мышей со вставками генов Н- и κ-цепей скрещивали по отдельности с мышами с инактивированными локусами этих цепей. Затем потомство скрещивали между собой, чтобы получить мышей, лишенных функциональных мышиных генов Н- и κ-цепей, но несущих обе вставки генов Н- и κ-цепей гемоглобина человека.
Трансгенные мыши с увеличенным числом человеческих VH- и Vκ-доменов синтезировали человеческие антитела. Их иммунизировали тремя разными антигенами, и в каждом случае гибридомы секретировали человеческие моноклональные антитела, обладающие высоким сродством к антигену, которым животные были иммунизированы. Весьма вероятно, что с помощью такой трансгенной системы удастся получать человеческие моноклональные антитела для использования их в медицине.
Трансгенные мыши: применение
Трансгенные мыши могут служить модельными системами для изучения болезней человека и тест-системами для исследования возможности синтеза продуктов, представляющих интерес для медицины. Используя целых животных, можно моделировать и возникновение патологии, и ее развитие. Однако мышь — не человек, хотя она тоже относится к классу млекопитающих, поэтому данные, полученные на трансгенных моделях, не всегда можно экстраполировать на человека в том, что касается медицинских аспектов. Тем не менее в некоторых случаях они позволяют выявить ключевые моменты этиологии сложной болезни. Принимая во внимание все это, ученые разработали «мышиные» модели таких генетических болезней человека, как болезнь Альцгеймера, артрит, мышечная дистрофия, образование опухолей, гипертония, нейродегенеративные нарушения, дисфункция эндокринной системы, сердечно-сосудистые заболевания и многие другие.
Трансгенный крупный рогатый скот
Если предполагается использовать молочную железу в качестве «биореактора», то наиболее предпочтительным животным для трансгеноза является крупный рогатый скот, который ежегодно дает до 10 000 л молока, содержащего примерно 35 г белка на 1 л. Если в молоке будет содержаться такое количество рекомбинантного белка и эффективность его очистки составит 50%, то от 20 трансгенных коров можно будет получать примерно 100 кг такого белка в год. По случайному совпадению, именно столько белка С, использующегося для предотвращения тромбообразования, требуется ежегодно. С другой стороны, одной трансгенной коровы будет более чем достаточно для получения требуемого ежегодно количества фактора IX (фактора Кристмаса) каскадного механизма свертывания крови, который вводят больным гемофилией для повышения свертываемости крови.
Для создания трансгенных коров использовали модифицированную схему трансгеноза мышей методом микроинъекций ДНК (рис. 10). Процедура включала следующие основные этапы.
1. Сбор ооцитов коров, забитых на скотобойне.
2. Созревание ооцитов in vitro.
3. Оплодотворение бычьей спермой in vitro.
4. Центрифугирование оплодотворенных яйцеклеток для концентрирования желтка, который в нормальных яйцеклетках мешает визуализации мужского пронуклеуса с помощью секционного микроскопа.
5. Микроинъекция ДНК в мужской пронуклеус.
6. Развитие эмбрионов in vitro.
7. Нехирургическая имплантация одного эмбриона реципиентной самке во время течки.
8. Скрининг ДНК потомков на наличие трансгена.
В тестовых экспериментах из пула в 2470 ооцитов были получены два трансгенных теленка. Этот результат указывает на результативность описанного подхода, но также и на его низкую эффективность. Исследования в этой области продолжаются, и есть надежда на усовершенствование методики трансгеноза. Например, скоро появится возможность отбирать небольшое число клеток у развивающегося эмбриона in vitro и тестировать их на наличие трансгена; такая потеря клеток эмбрионом не помешает его нормальному развитию. Этот тест позволит имплантировать только эмбрионы, несущие трансген.
Одна из целей трансгеноза крупного рогатого скота — изменение содержания в молоке различных компонентов. Так, количество сыра, получаемого из молока, прямо пропорционально содержанию в нем κ-казеина, поэтому весьма перспективным представляется увеличение количества синтезируемого κ-казеина с помощью гиперэкспрессии трансгена этого белка. Далее, если обеспечить экспрессию гена лактазы в клетках молочной железы, то можно будет получать молоко, не содержащее лактозы. Такое молоко незаменимо для многих людей, не переносящих лактозу; после приема молока или молочных продуктов у них возникает серьезное желудочное расстройство. Трансгеноз крупного рогатого скота — это весьма перспективный подход, но создание большого числа трансгенных животных потребует времени, ведь для того чтобы вырастить половозрелое животное из оплодотворенной яйцеклетки, нужно примерно 2 года.
Весьма актуально создание домашних животных с наследственной устойчивостью к бактериальным и вирусным инфекциям и паразитарным инвазиям. Известно о существовании пород с наследственной устойчивостью к бактериальным инфекционным заболеваниям - маститу (коровы), дизентерии (новорожденные поросята), холере (домашняя птица). Если в основе устойчивости к каждой из этих болезней лежит один ген, можно попытаться создать несущих его трансгенных животных. В настоящее время для борьбы с инфекционными заболеваниями домашних животных используют прививки и лекарственные препараты. Заболевших животных изолируют, за здоровыми ведут тщательное наблюдение. Стоимость всех этих мероприятий может достигать 20% обшей стоимости конечной продукции.
Для выведения линий животных, устойчивых к возбудителям инфекций, можно использовать другой подход, заключающийся в создании путем трансгеноза наследуемых иммунологических механизмов. С этой точки зрения рассматривают самые разные гены, ответственные за работу иммунной системы: гены основного комплекса гистосовместимости, Т-клеточных рецепторов, лимфокинов. Наиболее обнадеживающими на настоящее время являются предварительные результаты, полученные при введении мышам, кроликам и свиньям генов, кодирующих Н- и L-цепи какого-либо моноклонального антитела. Идея этого подхода заключается в том, чтобы снабдить трансгенное животное наследуемым механизмом защиты, позволяющим обойтись без иммунизации с помощью прививок.
Введение в организм реципиента генов антител, которые связываются со специфическими антигенами, было названо иммунизацией in vivo. Для этого гены Н- и L-цепей иммуноглобулинов моноклонального мышиного антитела к антителу, связывающемуся с 4-гидрокси-3-
Рис. 10. Получение трансгенных коров.
Трансгенные овцы, козы и свиньи
Опыты по трансгенозу в случае овец и коз в основном были направлены на превращение молочных желез этих животных в своеобразные биореакторы для получения белковых продуктов, использующихся в медицине. Несмотря на то что надои у овец и коз меньше, чем у коров, за год они дают сотни литров молока. С помощью метода, аналогичного используемому для создания трансгенных мышей и трансгенных конструкций, содержащих гены человека под контролем промоторов, специфичных для молочных желез, были созданы трансгенные овца и коза, в молоко которых секретировались белки человека. Они были гликозилированы и обладали активностью, близкой к таковой соответствующих белков, получаемых от человека. Однако, для того чтобы убедиться в полной эквивалентности этих белков, нужны дополнительные исследования. Экспрессия трансгенов в клетках молочных желез овец и коз не оказывала никаких побочных действий ни на самок в период лактации, ни на вскармливаемое потомство. В отличие от этого при введении свиньям трансгена бычего гормона роста под контролем промотора металлотионеина неблагоприятные эффекты наблюдались. Количество гормона у разных особей в группе трансгенных свиней различалось, однако в целом вся эта группа быстрее прибавляла в весе. К сожалению, этот положительный результат частично обесценивался различными патологиями: у животных отмечались язва желудка, почечная недостаточность, хромота, воспаление перикарда, уменьшение подвижности суставов, предрасположенность к пневмонии. Причины этих симптомов неизвестны. Возможно, они связаны с долговременным присутствием в организме избытка гормона роста. В этих экспериментах трансген синтезировался более или менее непрерывно. Были созданы также трансгенные овцы с повышенной скоростью роста шерсти. Для этого кДНК овечьего инсулиноподобного фактора роста I была помещена под контроль мышиного промотора гена кератина с высоким содержанием серы, что обеспечивало гиперэкспрессию кДНК. При этом у трансгенных овец в отличие от свиней никаких нежелательных побочных эффектов не наблюдалось.