Реконструкция абсорбционной колонны с целью повышения эффективности ее работы

Автор: Пользователь скрыл имя, 01 Апреля 2014 в 08:56, курсовая работа

Краткое описание

Основной задачей нефтеперерабатывающих предприятий является глубокая переработка нефти в бензин, авиационный керосин, мазут, дизельное топливо, смазочные масла, смазки, битумы, нефтяной кокс сырьё для нефтехимии. Производственный цикл Нефтеперерабатывающих заводов (НПЗ) обычно состоит из подготовки сырья, первичной перегонки нефти и вторичной переработки нефтяных фракций: каталитического крекинга, каталитического риформинга, коксования, висбрекинга, гидрокрекинга, гидроочистки и смешения компонентов готовых нефтепродуктов.
Установка Л-24/6 гидроочистки дизельных топлив, вакуумного газойля входит в состав цеха 8/14 Ангарского нефтеперерабатывающего завода. Проектная производительность 900000 тонн/год, достигнутая 1595000тонн/год. Введена в действие в 1965 г.

Оглавление

Введение 4
1. Существующие конструкции оборудования 5
1.1 Поверхностные и пленочные абсорберы 5
1.2 Насадочные абсорберы 8
1.3 Барботажные (тарельчатые) абсорберы 9
1.4 Распыливающие абсорберы 14
2. Технико-экономическое обоснование 16
3. Технологические расчеты 17
3.1 Гидравлическое сопротивление для клапанных тарелок 17
3.2 Гидравлическое сопротивление для колпачковых тарелок 20
4. Прочностные расчеты 22
4.1 Характеристика объекта исследований 22
4.2 Расчет на прочность основных конструктивных элементов 25
4.2.1 Расчет цилиндрических обечаек, нагруженных
внутренним избыточным давлением 25
4.2.2 Расчет эллиптических днищ, нагруженных внутренним
избыточным давлением 26
4.2.3 Расчет укрепления отверстий 27
4.2.3.1 Укрепление отверстия в цилиндрической обечайке 27
4.2.3.2 Укрепление отверстия в эллиптическом днище 28
4.3 Расчет на устойчивость и прочность от действия ветровой
и сейсмической нагрузок 29
4.3.1 Определение расчетных усилий от ветровых нагрузок 29
4.3.1.1 Определение периода собственных колебаний 29
4.3.1.2 Определение изгибающего момента от ветровой
нагрузки 30
4.3.2 Определение расчетных усилий от сейсмических нагрузок 33
4.3.3 Проверка на устойчивость 34
4.3.3.1 Расчет допускаемых значений осевого сжимающего
усилия, изгибающего момента и поперечного усилия 34
4.3.3.2 Проверка на устойчивость 36
4.3.4 Расчет напряжений 37
5. Расчет остаточного ресурса 40
6. Методы испытания аппарата 42
Выводы по курсовому проекту 48
Список использованной литературы 49

Файлы: 1 файл

Собранный курсовик.docx

— 2.17 Мб (Скачать)

Министерство образования и науки РФ

Ангарская государственная техническая академия

 

Кафедра «Машины и аппараты химических производств»

 

 

 

Курсовой проект

Реконструкция абсорбционной колонны с целью

повышения эффективности ее работы

 

Д 24.08.01.01.1.02.002. ПЗ

 

 

 

 

 

 

 

Выполнил:

студент гр.

МАХП-09-1

Бойцов А. В.

Руководитель:

зав. кафедрой МАХП

Подоплелов Е. В.

 

 

 

г. Ангарск, 2013 г. 
Содержание

Введение           4

1. Существующие конструкции оборудования     5

1.1 Поверхностные и пленочные  абсорберы     5

1.2 Насадочные абсорберы        8

1.3 Барботажные (тарельчатые) абсорберы     9

1.4 Распыливающие абсорберы       14

2. Технико-экономическое обоснование      16

3. Технологические расчеты        17

3.1 Гидравлическое сопротивление  для клапанных тарелок  17

3.2 Гидравлическое сопротивление  для колпачковых тарелок  20

4. Прочностные расчеты        22

4.1 Характеристика объекта исследований     22

4.2 Расчет на прочность основных  конструктивных элементов  25

4.2.1 Расчет  цилиндрических обечаек, нагруженных

внутренним избыточным давлением      25

4.2.2 Расчет  эллиптических днищ, нагруженных  внутренним

избыточным давлением        26

4.2.3 Расчет  укрепления отверстий      27

4.2.3.1 Укрепление  отверстия в цилиндрической обечайке  27

4.2.3.2 Укрепление  отверстия в эллиптическом днище  28

4.3 Расчет на устойчивость и  прочность от действия ветровой

и сейсмической нагрузок        29

4.3.1 Определение  расчетных усилий от ветровых  нагрузок  29

4.3.1.1 Определение периода собственных колебаний  29

4.3.1.2 Определение  изгибающего момента от ветровой

нагрузки          30

4.3.2 Определение  расчетных усилий от сейсмических  нагрузок 33

4.3.3 Проверка  на устойчивость      34

4.3.3.1 Расчет  допускаемых значений осевого сжимающего

усилия, изгибающего момента и поперечного усилия  34

4.3.3.2 Проверка  на устойчивость     36

4.3.4 Расчет  напряжений       37

5. Расчет остаточного ресурса       40

6. Методы испытания аппарата       42

Выводы по курсовому проекту       48

Список использованной литературы      49

 

Введение

Основной задачей нефтеперерабатывающих предприятий является глубокая переработка нефти в бензин, авиационный керосин, мазут, дизельное топливо, смазочные масла, смазки, битумы, нефтяной кокс сырьё для нефтехимии. Производственный цикл Нефтеперерабатывающих заводов (НПЗ) обычно состоит из подготовки сырья, первичной перегонки нефти и вторичной переработки нефтяных фракций: каталитического крекинга, каталитического риформинга, коксования, висбрекинга, гидрокрекинга, гидроочистки и смешения компонентов готовых нефтепродуктов.

Установка Л-24/6 гидроочистки дизельных топлив, вакуумного газойля входит в состав цеха 8/14 Ангарского нефтеперерабатывающего завода. Проектная производительность 900000 тонн/год, достигнутая 1595000тонн/год. Введена в действие в 1965 г.

Установка предназначена для очистки дизельных топлив, газойлей вторичных процессов переработки нефтяного сырья, бензиновой фракции замедленного коксования, вакуумного дистиллята от сернистых, кислородных и азотистых соединений путем гидрирования на алюмоникельмолибденовом катализаторе или алюмокобальтмолибденовом катализаторе.

Абсорбер углеводородных газов К-7

Колонна поз. К-7 предназначена для очистки углеводородных газов стабилизации установки от сероводорода раствором моноэтаноламина (МЭА). Процесс осуществляется методом абсорбции  5-15% раствором  моноэтаноламина (МЭА) с последующей его регенерацией.

Д=1600мм; Н=18550мм; Р=1,5кгс/см2; колпачковые тарелки – 16шт; Т=75°С; Завод химического машиностроения Рудислебен, Тюрингия, ГДР. Год изготовления 1962 г.

 

1. Существующие конструкции оборудования

Аппараты, в которых осуществляются абсорбционные процессы, называют абсорберами. Как и другие процессы массопередачи, абсорбция протекает на границе раздела фаз. Поэтому абсорберы должны иметь развитую поверхность соприкосновения между жидкостью и газом. По способу образования этой поверхности абсорберы можно условно разделить на следующие группы: поверхностные и пленочные, насадочные, барботажные (тарельчатые), распыливающие.

1.1 Поверхностные и пленочные абсорберы

В абсорберах этого типа поверхностью соприкосновения фаз является зеркало неподвижной или медленно движущейся жидкости, или же поверхность текущей жидкой пленки.

Поверхностные абсорберы. Эти абсорберы используют для поглощения хорошо растворимых газов (например, для поглощения хлористого водорода водой). В указанных аппаратах газ проходит над поверхностью неподвижной или  медленно движущейся жидкости (рис. 1). Так как поверхность соприкосновения в таких абсорберах мала, то устанавливают несколько последовательно соединенных аппаратов, в которых газ и жидкость движутся противотоком друг к другу. Для того чтобы жидкость перемешивалась по абсорберам самотеком, каждый последующий по ходу жидкости аппарат располагают несколько ниже предыдущего. Для отвода тепла, выделяющегося при абсорбции, в аппаратах устанавливают змеевики, охлаждаемые водой или другим охлаждающим агентом, либо помещают абсорберы в сосуд с проточной водой.

Более совершенным аппаратом такого типа является абсорбер (рис. 2), состоящий из ряда горизонтальных труб, орошаемых снаружи водой. Необходимый уровень жидкости в каждом элементе 1 такого аппарата поддерживается с помощью порога 2.

Рис. 1. Поверхностный абсорбер.

Рис. 2. Оросительный абсорбер:

1 – элемент абсорбера; 2 – сливные пороги


 

Пластинчатый абсорбер (рис. 3) состоит из двух систем каналов: по каналам 1 большого сечения движутся противотоком газ и абсорбент, по каналам 2 меньшего сечения –– охлаждающий агент (как правило, вода). Пластинчатые абсорберы обычно изготавливают из графита, так как он является химически стойким, хорошо проводящим тепло.

Поверхностные абсорберы имеют ограниченное применение вследствие их малой эффективности и громоздкости.

Пленочные абсорберы. Эти аппараты более эффективны и компактны, чем поверхностные абсорберы. В пленочных абсорберах поверхностью контакта фаз является поверхность текущей пленки жидкости. Различают следующие разновидности аппаратов данного типа: 1) трубчатые абсорберы; 2) абсорберы с плоско-параллельной или листовой насадкой; 3) абсорберы с восходящим движением пленки жидкости.

Трубчатый абсорбер (рис. 4) сходен по устройству с вертикальным кожухотрубчатым теплообменником. Абсорбент поступает на верхнюю трубную решетку 1, распределяется по трубам 2 и стекает по их внутренней поверхности в виде тонкой пленки. В аппаратах с большим числом труб для более равномерной подачи и распределения жидкости по трубам используют специальные распределительные устройства. Газ движется по трубам снизу вверх навстречу стекающей жидкой пленки. Для отвода тепла абсорбции по межтрубному пространству пропускают воду или другой охлаждающий агент.

Абсорбер с плоскопараллельной насадкой (рис. 5). Этот аппарат представляет собой колонну с листовой насадкой 1 в виде вертикальных листов из различного материала (металл, пластические массы и др.) или туго натянутых полотнищ из ткани. В верхней части абсорбера находятся распределительные устройства 2 для равномерного смачивания листовой насадки с обеих сторон.

Рис. 5. Абсорбер с плоскокапельной насадкой:

1 – листовая насадка; 2 - распределительное устройство.

Рис. 6. Абсорбер с восходящим движением жидкой пленки:

1 – трубы; 2 – трубная  решетка; 3 – камера; 4 – патрубок для подачи газа; 5 – щель для подачи абсорбента.


 

Абсорбер с восходящим движением пленки (рис. 6) состоит из труб 1, закрепленных в трубных решетках 2. Газ из камеры 3 проходит через патрубки 4, расположенные соосно с трубами 1. Абсорбент поступает в трубы через щели 5. Движущийся с достаточно большой скоростью газ увлекает жидкую пленку в направлении своего движения (снизу вверх), т.е. аппарат работает в режиме восходящего прямотока. На выходе из труб 1 жидкость сливается на верхнюю трубную решетку и выводится из абсорбера. Для отвода тепла абсорбции по межтрубному пространству пропускают охлаждающий агент. Для увеличения степени извлечения применяют абсорберы такого типа, состоящие из двух или более ступеней, каждая из которых работает по принципу прямотока, в то время как в аппарате в целом газ и жидкость движутся противотоком друг к другу. В аппаратах с восходящим движением пленки вследствие больших скоростей газового потока (до 30-40 м/сек) достигаются высокие значения коэффициентов массопередачи, но, вместе с тем, гидравлическое сопротивление этих аппаратов относительно велико.

1.2 Насадочные абсорберы

Широкое распространение в промышленности в качестве абсорберов получили колонны, заполненные насадкой – твердыми телами различной формы. В насадочной колонне (рис.7) насадка 1 укладывается на опорные решетки 2, имеющие отверстия или щели для прохождения газа и стока жидкости. Последняя с помощью распределителя 3 равномерно орошает насадочные тела и стекает вниз. По всей высоте слоя насадки равномерного распределения жидкости по сечению колонны обычно не достигается, что объясняется пристеночным эффектом – большей плотностью укладки насадки в центральной части колонны, чем у ее стенок. Вследствие этого жидкость имеет тенденцию растекаться от центральной части колонны к ее стенкам. Поэтому для улучшения смачивания насадки в колоннах большого диаметра насадку иногда укладывают слоями (секциями) высотой 2-3 м и под каждой секцией, кроме нижней, устанавливают перераспределитель жидкости 4.

 

В насадочной колонне жидкость течет по элементу насадки главным образом в виде тонкой пленки, поэтому поверхностью контакта фаз является в основном смоченная поверхность насадки, и насадочные аппараты можно рассматривать как разновидность пленочных. Однако в последних пленочное течение жидкости происходит по всей высоте аппарата, а в насадочных абсорберах – только по высоте элемента насадки. При перетекании жидкости с одного элемента насадки на другой пленка жидкости разрушается и на нижележащем элементе образуется новая пленка. При этом часть жидкости проходит через расположенные ниже слои насадки в виде струек, капель и брызг. Часть поверхности насадки бывает смочена неподвижной (застойной) жидкостью.

1.3 Барботажные (тарельчатые) абсорберы

Тарельчатые абсорберы представляют собой, как правило, вертикальные колонны, внутри которых на определенном расстоянии друг от друга размещены горизонтальные перегородки – тарелки. С помощью тарелок осуществляется направленное движение фаз и многократное взаимодействие жидкости и газа.

В настоящее время в промышленности применяются разнообразные конструкции тарельчатых аппаратов. По способу слива жидкости с тарелок барботажные абсорберы можно подразделить на колонны: 1) с тарелками со сливными устройствами и 2) с тарелками без сливных устройств.

Тарельчатые колонны со сливными устройствами. В этих колоннах перелив жидкости с тарелки на тарелку осуществляется при помощи специальных устройств – сливных трубок, карманов и т.п. Нижние колонны трубок погружены в стакан на нижерасположенных тарелках и образуют гидравлические затворы, исключающие возможность прохождение газа через сливное устройство.

Принцип работы колонн такого типа виден из рис. 8 где в качестве примера показан абсорбер с ситчатыми тарелками. Жидкость поступает на верхнюю тарелку 1, сливается с тарелки на тарелку через переливные устройства 2 и удаляются из нижней части колонны. Газ поступает в нижнюю часть аппарата проходит последовательно сквозь отверстия или колпачки каждой тарелки. При этом газ распределяется в виде пузырьков и струй в слое жидкости на тарелке, образуя на ней слой пены, являющийся основной областью массообмена и теплообмена на тарелке. Отработанный газ удаляется сверху колонны.

Переливные трубки располагают на тарелках таким образом, чтобы жидкость на соседних тарелках протекала во взаимопротивоположных направлениях. За последнее время все шире применяют сливные устройства в виде сегментов, вырезанных в тарелке и ограниченных порогом – переливом.

К тарелкам со сливными устройствами относятся: ситчатые, колпачковые, клапанные и балластные, пластинчатые.

Ситчатые тарелки. Колонна с сетчатыми тарелками (рис. 9) представляет собой вертикальный цилиндрический корпус 1 с горизонтальными тарелками 2, в которых равномерно по всей поверхности просверлено значительное число отверстий диаметром 1 – 5 мм. Для слива жидкости и регулирования ее уровня на тарелке служат переливные трубки 3, нижние концы которых погружены в стаканы 4.

Газ проходит сквозь отверстия тарелки и распределяется в жидкости в виде мелких струек и пузырьков. При слишком малой скорости газа жидкость может просачиваться (или «проваливаться») через отверстия тарелки на нижерасположенную, что должно привести к существенному снижению интенсивности массопередачи. Поэтому газ должен двигаться с определенной скоростью и иметь давление, достаточное для того, чтобы преодолеть давление слоя жидкости на тарелке и предотвратить стекание жидкости через отверстия тарелки.

Ситчатые тарелки отличаются простотой устройства, легкостью монтажа, осмотра и ремонта. Гидравлическое сопротивление этих тарелок невелико. Ситчатые тарелки устойчиво работают в довольно широком интервале скоростей газа, причем в определенном диапазоне нагрузок по газу и жидкости эти тарелки обладают высокой эффективностью. Вместе с тем ситчатые тарелки чувствительны к загрязнениям и осадкам, которые забивают отверстия тарелок. В случае внезапного прекращения поступления газа или значительного снижения его давления с ситчатых тарелок сливается вся жидкость, и для возобновления процесса требуется вновь запускать колонну.

Колпачковые тарелки. Менее чувствительны к загрязнениям, чем колонны с ситчатыми тарелками, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками (рис. 10). Газ на тарелку 1 поступает по патрубкам 2, разбиваясь затем прорезями колпачка 3 на большое число отдельных струй. Прорези колпачков наиболее часто выполняются в виде зубцов треугольной или прямоугольной формы. Далее газ проходит через слой жидкости, перетекающей по тарелке от одного сливного устройства 4 к другому. При движении через слой значительная часть мелких струй распадается и газ распределяется в жидкости в виде пузырьков. Интенсивность образования пены и брызг на колпачковых тарелках зависит от скорости движения газа и глубины погружения колпачка в жидкость.

Информация о работе Реконструкция абсорбционной колонны с целью повышения эффективности ее работы